
Leonardo Seperuelo Duarte

TopSim: A plugin-based framework for
large-scale numerical analysis

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of the Departamento de Informática, PUC-Rio as partial
fulfillment of the requirements for the degree of Doutor em In-
formática.

Advisor: Prof. Waldemar Celes Filho

Rio de Janeiro
September, 2016

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Leonardo Seperuelo Duarte

TopSim: A plugin-based framework for
large-scale numerical analysis

Thesis presented as partial fulfillment of the requirements for
the degree of Doutor to the Programa de Pós–graduação em
Doutorado em Informática of the Departamento de Informática
da PUC-Rio.Approved by the Examining Commission signed
below.

Prof. Waldemar Celes Filho
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcelo Gattass
Departamento de Informática – PUC-Rio

Prof. Ivan Fábio Mota de Menezes
Departamento de Engenharia Mecânica – PUC-Rio

Prof. Glaucio Hermogenes Paulino
– Georgia Tech University

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research – Brazil

Prof. Marcos de Oliveira Lage Ferreira
– UFF

Prof. Márcio da Silveira Carvalho
Coordinator of the Centro Técnico Científico – PUC-Rio

Rio de Janeiro, September 9th, 2016

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

All rights reserved

Leonardo Seperuelo Duarte
Graduated in Electrical Engineering at Pontifícia Universi-
dade Católica do Rio de Janeiro. Obtained a Master´s de-
gree in Computer Science at Pontifícia Universidade Católica
do Rio de Janeiro, acting in the area of grains simulation in
GPGPU programming. Did his PhD in Computer Science at
Pontifícia Universidade Católica do Rio de Janeiro with a full
CNPq scholarship, including a collaboration with the Univer-
sity of Illinois as a visiting researcher. While doing his Masters
and PhD, he worked as a researcher at Tecgraf/PUC-Rio de-
veloping simulators to design flexible lines and anchor systems
for oil and gas industry.

Bibliographic data
S. Duarte, Leonardo

TopSim: A plugin-based framework for large-scale numer-
ical analysis / Leonardo Seperuelo Duarte; advisor: Waldemar
Celes Filho. – Rio de Janeiro : PUC-Rio, Departamento de
Informática, 2016.

v., 91 f: il. ; 29,7 cm

1. Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui referências bibliográficas.

1. Informática – Tese. 2. Sistema baseado em plugin.
3. Análise Numérica. 4. Otimização Topológica. 5. Solver
elemento-por-elemento. 6. Análise em larga escala. 7.
Método dos Elementos Finitos. 8. Computação Paralela.
Computação Distribuída. I. Celes, Waldemar. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Acknowledgements

To my lovely wife, Tabatha Fonseca Seperuelo Duarte, for all the part-
nership and devotion by my side during all this journey. Without you, the
experience of living in another country would had not been an adventure.

To my family, for all the support they have given throughout my life. To
my father, Célio de Oliveira Duarte, my mother, Norma Seperuelo Duarte, my
brothers and sisters, Ricardo, Eduardo, Roberta and Camila, and my newborns
nephew and niece, Rafael and Antonia. In memoriam to my grandmother,
Noemia Martins Seperuelo, whose life was dedicated to our family.

To my advisor, Waldemar Celes Filho, and my co-advisors Ivan F. M.
de Menezes and Glaucio H. Paulino without whom the research would not be
possible, specially during my collaboration with the University of Illinois as a
visiting researcher. Thank you for motivating me throughout these whole years
as my advisers, teachers and leaders.

To Rodrigo Espinha and Anderson Pereira, for all the collaboration and
teamwork during this project.

To Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPQ), for making this research possible.

To Tecgraf/PUC-Rio laboratory, for giving me the opportunity and
support to face such challenges and learning with them.

To all my friends for their support and friendship.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Abstract

S. Duarte, Leonardo; Celes, Waldemar. TopSim: A plugin-based
framework for large-scale numerical analysis. Rio de Janeiro,
2016. 91p. PhD Thesis – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Computational methods in engineering are used to solve physical
problems that do not have analytical solution or their perfect mathematical
representation is unfeasible. Numerical techniques, including the largely
used finite element method, require the solution of linear systems with
hundreds of thousands equations, demanding high computational resources
(memory and time). In this thesis, we present a plugin-based framework for
large-scale numerical analysis. The framework is used as an original tool to
solve topology optimization problems using the finite element method with
millions of elements. Our strategy uses an element-by-element technique to
implement a highly parallel code for an iterative solver with low memory
consumption. Besides, the plugin approach provides a fully flexible and
easy to extend environment, where different types of applications, requiring
different types of finite elements, materials, linear solvers, and formulations,
can be developed and improved. The kernel of the framework is minimum
with only a plugin manager module, responsible to load the desired plugins
during runtime using an input configuration file. All the features required
for a specific application are defined inside plugins, with no need to change
the kernel. Plugins may provide or require additional specialized interfaces,
where other plugins may be connected to compose a more complex and
complete system. We present results for a structural linear elastic static
analysis and for a structural topology optimization analysis. The simulations
use elements Q4, hexahedron (Brick8), and hexagonal prism (Honeycomb),
with direct and iterative solvers using sequential, parallel and distributed
computing. We investigate the performance regarding the use of memory
and the scalability of the solution for problems with different sizes, from
small to very large examples on a single machine and on a cluster. We
simulated a linear elastic static example with 500 million elements on 300
machines.

Keywords
Plugin-based Framework; Numerical Analysis; Topology Optimiza-

tion; Element-by-Element Solver; Large-scale Analysis; Finite Element
Method; Parallel Computing; Distributed Computing.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Resumo

S. Duarte, Leonardo; Celes, Waldemar. TopSim: Um sistema
baseado em plugin para análise numérica em larga escala.
Rio de Janeiro, 2016. 91p. Tese de Doutorado – Departamento de In-
formática, Pontifícia Universidade Católica do Rio de Janeiro.

Métodos computacionais em engenharia são usados na solução de
problemas físicos que não possuem solução analítica ou sua perfeita
representação matemática é inviável. Técnicas de métodos numéricos,
incluindo o amplamente usado método dos elementos finitos, podem exigir
a solução de sistemas lineares com centenas de milhares de equações,
demandando altos recursos computacionais (memória e tempo). Nesta tese,
nós apresentamos um sistema baseado em plugins para análise numérica em
larga escala. O sistema é usado como uma ferramenta original na solução
de problemas de otimização topológica usando o método dos elementos
finitos com milhões de elementos. Nossa estratégia utiliza uma técnica
elemento-por-elemento para implementar um código altamente paralelo
para um solver iterativo com baixo consumo de memória. Além disso, a
abordagem de plugin proporciona um ambiente completamente flexível
e fácil de estender, onde diferentes aplicações, exigindo diferentes tipos
de elementos finitos, materiais, solvers lineares e formulações podem ser
desenvolvidos e melhorados. O kernel do sistema é mínimo, com apenas um
módulo gerenciador de plugin, responsável por carregar os plugins desejados
em tempo real usando um arquivo de configuração de entrada. Todas as
funcionalidades necessárias para uma determinada aplicação são definidas
dentro dos plugins, sem a necessidade de mudar o kernel. Plugins podem
disponibilizar ou exigir interfaces adicionais especializadas, onde outros
plugins podem ser conectados para compor um sistema mais complexo e
completo. Nós apresentamos resultados para uma análise estrutural estática
linear elástica e para uma análise estrutural de otimização topológica. As
simulações utilizam elementos Q4, hexagonal (Brick8) e prisma hexagonal
(Honeycomb), com solvers diretos e iterativos usando computação sequen-
cial, paralela e distribuída. Nós investigamos o desempenho com relação ao
uso de memória e escalabilidade da solução para problemas com diferentes
tamanhos, de exemplos pequenos a muito grandes em apenas uma máquina
e em um cluster. Foi simulado um exemplo de análise estática linear elástica
com 500 milhões de elementos em 300 máquinas.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Palavras-chave
Sistema baseado em plugin; Análise Numérica; Otimização Topológ-

ica; Solver elemento-por-elemento; Análise em larga escala; Método dos
Elementos Finitos; Computação Paralela; Computação Distribuída.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Contents

1 Introduction 14
1.1 Motivation 14
1.2 Objectives 16
1.3 Related Work 17
1.3.1 Finite Element Analysis 17
1.3.2 Topology Optimization Analysis 19
1.4 Document Organization 22

2 Theory and Formulations 24
2.1 Finite Element Method 24
2.2 Topology Optimization 26

3 Plugin-based Framework 31
3.1 Overview 31
3.2 Model Representation 32
3.3 Plugin Manager 34
3.4 Plugins 38
3.4.1 Analysis, Behavior, Integrator, and Numbering 38
3.4.2 Reader and Writer 41
3.4.3 Sparse Matrix, Linear System, and Preconditioner 42
3.4.4 Topology Optimization and Element Types 48
3.5 Results 52
3.5.1 Linear Static Analysis 52
3.5.2 Nonlinear Static Analysis 59
3.5.3 Topology Optimization Analysis 61
3.5.4 Element-by-Element Approach 67

4 Distributed Solution on Clusters 71
4.1 Distributed Approach 72
4.2 Distributed Mesh Generation 75
4.3 Results 76

5 Conclusion 83
5.1 Future Work 84

Bibliography 86

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

List of figures

2.1 Finite element model of a cantilever beam with linear elastic material. 24
2.2 Topology optimization steps for the compliance minimization prob-

lem. 28

3.1 Example of a framework configuration to solve a static linear elastic
problem. 32

3.2 Finite element types available in TopS. (a) Linear elements. (b)
Quadratic elements. 33
3.2(a) 33
3.2(b) 33

3.3 Example of nodes and elements attributes created in TopS. 34
3.4 Configuration Lua file with the plugins selected by the user to run

the simulation. 35
3.5 Examples of types of services and their interfaces to connect plugins. 36
3.6 The PCG plugin connected to the Linear System service, and

requiring the connection of a sparse matrix and a preconditioner
plugin. 37

3.7 PCG plugins requiring the connection of dependent services. 37
3.8 Creating the PCG plugin using functions from the Plugin Manager. 38
3.9 Three main services of the framework with their plugin definitions. 38
3.10 Framework main stages, showing how the plugins interact with each

other to run the simulation. 39
3.11 Load control method. 40
3.12 Reader and writer services with their plugin definitions. 41
3.13 Piece of code to query and call the read section interface from the

Isotropic plugin during the model reading process. 41
3.14 Services and plugins created in the framework to solve a linear

system of equations. 44
3.15 Race condition on the matrix-vector product of two different ele-

ments computed in parallel by two different threads. The elements
share common dofs and may have to write in the same memory
position in array q [28]. 48

3.16 A node must visit all its neighboring elements during the matrix-
vector product. 49
3.16(a) 49
3.16(b) 49
3.16(c) 49
3.16(d) 49

3.17 The topology optimization Simp plugin is modeled as a new type
of analysis. All plugins previously used for the FEM example can be
connected with no change. 50

3.18 Element types implemented in the framework, including the hexag-
onal prism element. 51

3.19 Summary of all services and plugins described up to now in the
framework. 51

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

3.20 Geometry and boundary conditions of the Cook´s problem. 53
3.21 Results of the linear analysis of the Cook´s problem. The colors

represent the displacement of the nodes in the Y direction. 53
3.22 Results of the linear analysis of the Cook´s problem. The numer-

ical solution approaches the analytical solution as the number of
elements increases. 54

3.23 Time to solve the Cook’s problem using the solvers implemented
in the framework. 54

3.24 Memory used to solve the Cook’s problem using the solvers imple-
mented in the framework. 55

3.25 3D Cantilever Beam problem: (a) geometry and boundary condi-
tions of the problem; (b) extra boundary conditions to restrain the
displacement of the nodes in Z direction. 55
3.25(a) 55
3.25(b) 55

3.26 Post-processor of Abaqus with the results of the 3D Cantilever
Beam problem. The colors show the displacement of the nodes in
Y direction. 56

3.27 Time to solve the 3D Cantilever Beam problem using the iterative
solver from Abaqus and the PCG from TopSim, both considering
only 1 core of the machine. 57

3.28 Time to solve the 3D Cantilever Beam problem using the direct
solver of Abaqus and the PARDISO solver of TopSim, both using
only 1 core of the machine. Abaqus was not capable to solve the
examples with 768 K and 1.5 M elements due to memory limitations. 57

3.29 Time to solve the 3D Cantilever Beam problem using the iterative
solver of Abaqus and the PCG of TopSim, both using all the 24
cores of the machine. 58

3.30 Time to solve the 3D Cantilever Beam problem using the direct
solver of Abaqus and the PARDISO solver of TopSim, both using
all 24 cores of the machine. Abaqus was not capable to solve the
examples with 768 K and 1.5 M elements due to memory limitations. 59

3.31 Time to solve the 3D Cantilever Beam problem using the iterative
solver of Abaqus, and the EbEPCG solver of TopSim, both using
all 24 cores of the machine. 59

3.32 Time to solve the 3D Cantilever Beam problem using the iterative
and direct solvers of Abaqus the of TopSim, using all 24 cores of
the machine. 60

3.33 Geometry and boundary conditions of the Lee´s problem. 60
3.34 Results for the Lee´s problem: deformed configurations in steps (a)

1, (b) 5, (c) 10, and (d) 17. 61
3.35 Topology optimization analysis of the 3D Cantilever Beam problem.

(a) geometry and boundary conditions applied to the problem; (b)
extra boundary conditions applied to the symmetry plane; (c) final
optimal topology 62

3.36 Different views of the optimal topology of previous example. 63
3.35(a) 63
3.35(b) 63

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

3.35(c) 63
3.36(a) 63
3.36(b) 63

3.37 Average time to solve one iteration of the optimization process. 64
3.38 Peak memory required to solve the optimization problem. 64
3.39 Performance analysis of the topology optimization problem for

larger meshes. (a) average time to solve an iteration of the op-
timization process; (b) peak memory required to solve the opti-
mization problem. 65
3.39(a) 65
3.39(b) 65

3.40 Topology optimization problem simulated with the entire beam.
(a) geometry and boundary conditions and applied force; (b) final
optimal topology using hexagonal prism elements. 66
3.40(a) 66
3.40(b) 66

3.41 Topology optimization results with different views of the final
optimal topology. 67
3.41(a) 67
3.41(b) 67

3.42 Histogram with the number of cores running simultaneously. 68
3.43 CPU time utilization by work threads, showing a good load balance

during the simulation. 69
3.44 Cache miss rate of the EbEPCG solver. 69
3.45 Speedup results for the linear static analysis with hexahedron

elements: (a) performance improvement with 127K elements and
different working cores; (b) almost constant performance for a
constant ratio between number of elements and cores. 70
3.45(a) 70
3.45(b) 70

4.1 Domain decomposition for the distributed solution in clusters. 71
4.2 Plugins created to decompose, read, and write the mesh partitions. 72
4.3 Original mesh partitioned into subdomains. Each node or element

belongs to only one local mesh. [53] 72
4.4 Communication layer created between the partitions. The attributes

of the elements and nodes are synchronized to keep the mesh
consistent. [53] 73

4.5 In the distributed element-by-element algorithm, only the nodes
belonging to the local mesh are computed, in order to guarantee
that all the neighboring elements always exist. [53] 74

4.6 Plugins developed in the framework specifically for distributed
computing in clusters. 74

4.7 Parametric block included in the neutral file for the distributed mesh
generation. 75

4.8 Plugins implemented for the distributed mesh generation with
hexahedron and hexagonal prism elements. 76

4.9 Picture of the Blue Waters Supercomputer inside its building. 77

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

4.10 Speedup for solving a static analysis on Blue Waters with 50 M
elements. 78

4.11 Computational performance for a constant ratio between the num-
ber of elements and machines used on Blue Waters. 78

4.12 Geometry and boundary conditions and distributed external load of
the topology optimization simulation on Blue Waters. 79

4.13 Final optimal topology of the 3D Cantilever Beam problem with
a distributed external force, simulated with 12 million elements on
300 machines of the Blue Waters Supercomputer. 80
4.13(a) 80
4.13(b) 80
4.13(c) 80

4.14 Summary of all services and plugins develop in the TopSim framework. 82

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

List of tables

1.1 Example of large-scale problems in topology optimization. 15

3.1 PolyTop code runtime profile for different number of elements. The
assembling of the global stiffness matrix K is the most expensive
part of the code [18]. 47

3.2 Computing platform used in the numerical simulations. 52
3.3 Computing platform used to compare the numerical results with

Abaqus. 56
3.4 Parameters used in the topology optimization simulation. 62

3.34(a) 62
3.34(b) 62
3.34(c) 62
3.34(d) 62

3.5 Parameters used in the topology optimization simulation with
hexagonal prism elements. 66

3.6 Computing platform used for the performance analysis of the
EbEPCG. 68

4.1 Size of the files and memory required to decompose the mesh and
run extremely large-scale examples on a cluster. 75

4.2 Summary with the specifications of the Blue Waters Supercomputer. 77
4.3 Static analysis with a constant number of elements per machine on

the Blue Waters Supercomputer. 79
4.4 Time to solve the example of Figure 4.12 on the Blue Waters

Supercomputer. 79
4.5 Extremely large-scale examples simulated on Blue Waters. 81

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

1
Introduction

1.1
Motivation

Computational methods in engineering are commonly used to solve phys-
ical problems that do not have an analytical solution or when a perfect mathe-
matical representation of complex geometries, loads, boundary conditions, and
material behavior is unfeasible. The physical nature of the problem is trans-
formed into a mathematical abstraction, and numerical methods use arithmetic
operations to compute the solution. Some analyses may consider the behavior
of a continuum or the interaction of particle elements. The decision regarding
the best model to be used requires a fine balance between algorithm design,
efficiency, accuracy, and computational difficulties.

There are a wide variety of numerical techniques in continuum mechanics,
including the largely used finite element method (FEM). This is one of the
most important methods for numerical analysis, used to solve problems in
different areas such as structural and fluid mechanics, thermal analysis and
electromagnetism, by both academic and industry communities. Basically, the
displacement-based FEM consists of subdividing the domain into small and
convex regions, called elements, where a displacement field is prescribed. Then,
the governing differential equation is satisfied in an approximated way and the
error between the exact and approximated solutions is minimized within the
domain. The original differential equation is then transformed into a system
of linear algebraic equations whose solution corresponds to the displacements
at the nodes of each element.

The level of accuracy required in a finite element analysis (FEA) depends
basically on the number of elements, element type, and shape functions used
within the elements. Regarding the size of the problem, it is easy to find models
with hundreds of thousands elements. The computational cost to solve such
large systems can be extremely high and it usually turns out to be the main
performance and memory bottlenecks. Nowadays, with the development of
modern machines and supercomputers, the challenge has become to design
algorithms with an efficient use of memory and all the computer power

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 15

available, in general by means of parallel computing. Researchers have been
working to push the limit further to millions and billions elements in order to
solve real life problems.

Considering a more specific and complex engineering application that
uses FEM as its main numerical tool, structural topology optimization has
even more computational challenges. The method is used to find the optimum
material distribution within a given domain, subject to loading, boundary
conditions and design constraints, in such a way to minimize some performance
measure. In the case of compliance minimization, the optimization process
usually requires a finite element analysis which means that a linear system of
equations must be solved in each iteration of the optimization process.

Accurate formulations of real life topology optimization problems require
solving extremely large systems, as shown in Table 1.1. Furthermore, an
important issue when implementing a topology optimization analysis is the
ability to extend, develop and modify the code to solve more complex and
large-scale problems. For example, by using a modular code it is easier to
replace the current analysis method with a more suitable analysis package
for solving a different problem. The formalism of this modular approach is
crucial when one seeks to improve the analysis routines, change the objective
function, modify the sensitivities, without changing the topology optimization
formulation, including the material interpolation and regularization schemes
(e.g. filters and other manufacturing constraints).

Problem No. of unknows

Very Large 90 000 000 [1]

Largest 343 800 000 [2]

Our Goal 1 000 000 000

Table 1.1: Example of large-scale problems in topology optimization.

The combination of flexibility and scalability to solve large-scale prob-
lems in numerical analysis is very challenging. Using a very general solution,
a well organized modular code may focus more in attending a variety of
applications and lose its efficiency to solve specific large problems. On the
other hand, a fast but hard coded implementation is also not desired because
it would be useful only for specific types of applications.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 16

1.2
Objectives

This work presents a plugin based framework for large-scale numerical
analysis. The framework is designed to perform numerical analysis using the
finite element method for engineering applications. One of the goals is to
present an original tool capable of solving topology optimization problems with
up to a billion of finite elements. The strategy consists of using an assembly-free
technique to implement a highly parallel code for an iterative solver with low
memory consumption. Moreover, the plugin approach provides a flexible and
easy to extend environment, where different types of applications, requiring
different types of finite elements, materials, linear solvers, and formulations,
can be developed and improved.

We propose the architecture and the interface required to create and
connect a plugin into the framework. Plugins are created to implement spe-
cialized algorithms to solve specific problems efficiently. Using a configuration
input file, the framework is able to load at runtime a set of desired plugins
to perform a specific numerical analysis. To achieve a good performance in
large-scale simulations, we propose an element-by-element version of the PCG
solver [3]. The global stiffness matrix is never assembled, and our matrix-
vector multiplication is done in parallel for each node in the mesh, without
race condition and no need of mesh coloring. The framework also includes a
distributed implementation using domain decomposition and MPI (Message
Passing Interface) to simulate problems on large clusters.

We present results for a structural static linear elastic analysis and for a
structural topology optimization analysis. The simulations use three different
types of elements, Q4, hexahedron (Brick), and hexagonal prism (Honeycomb),
with direct and iterative solvers using sequential and parallel computing. We
investigate the performance of problems with different sizes, from small to
large examples in a single machine and in a cluster, considering the use of
memory and computational resources. We compare our results with Abaqus
1, a well-known commercial tool, to check if the plugin approach could affect
and degrade the performance scalability. We simulated a few iterations of a
topology optimization example obtained with a billion of elements using 3000
machines in the Blue Waters Supercomputer 2.

The main contributions of this thesis are:

– A fully flexible and easy to extend numerical analysis framework, based
on plugins;

1http://abaqus.software.polimi.it/v6.14/index.html
2http://bluewaters.ncsa.illinois.edu

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 17

– An assemble-free iterative solver for the linear system of equations, with
low memory consumption and a scalable performance;

– The capability to run extremely large-scale problems (e.g. a billion of
elements) using supercomputers.

– A functionality that allows the user to configure the plugins dynamically
in order to simulate different problems and try to achieve the best
performance with both small (using direct solvers) and large (using
iterative solvers) problems.

1.3
Related Work

1.3.1
Finite Element Analysis

Tools for finite element analysis have been developed for many years
by a wide range of different research groups around the world. We can find
some common features and concerns in many publications, such as modularity,
flexibility to extend the code to different applications, and parallel solutions to
speedup the simulation. The FEMOOP code [4,5], for example, was developed
in the beginning of 90s as a standard C object-oriented implementation of the
finite element method, originally created for numerical analysis of structures
considering both linear and nonlinear behaviors. Couple of years later, the
code was completely reformulated in C++, increasing the object-oriented
capability and allowing an easy collaboration among different researchers
during the development and expansion of the code. Today, there is also a
parallel version [6] developed with MPI and PVM (Parallel Virtual Machine).
The publications describe the class organization, geometry representation,
material nonlinearities, and details about nonlinear solution schemes. The
parallel version focus both on mesh generation and FEM solution, using
domain decomposition techniques and an element-by-element solver. They
present results with up to 9,000 tetrahedral elements running in 6 processors.

In 2002, Lee Margetts [7] presented a parallel finite element code in his
PhD Thesis. Today, he is one of the leading developers of the ParaFEM project
3, which is an open source platform to provide a foundation for teaching and
researching. The code is an extension of the standard Fortran finite element
software presented in the text book by Smith, Griffiths and Margetts [8]. As a
main feature, the parallel version of the program looks identical to their serial
counterparts, packing the parallel processing in self-contained subroutines with

3http://parafem.org.uk/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 18

MPI. The authors claim that anyone with the ability to modify a sequential
finite element code can easily modify its parallel version. The system of
equations is solved using an iterative technique with an element-by-element
approach. It has been used to solve problems with more than a billion degrees
of freedom, scaling on up to 32,000 cores using modern supercomputers.

The Trilinos Project [9] aims to facilitate the development and integration
of mathematical software libraries within an object-oriented framework at San-
dia Laboratory 4. The goal is the solution of large-scale, complex multi-physics
engineering and scientific problems. Two fundamental issues are addressed for
these problems: to provide a streamlined process and a set of tools for devel-
opment of new algorithmic implementations, and to promote interoperability
of independently developed software. A two-level software structure was de-
signed based on the idea of collections of packages. A package is an unit usually
developed by a small team of experts in a particular area, such as algebraic
preconditioners and nonlinear solvers. The packages are created underneath a
top level, which provides an uniform interface. It was motivated by a recog-
nition that a modest degree of coordination across these efforts could have a
large positive impact on the quality and usability of the software produced,
intended to enhance research, development and integration of new algorithms
into applications. The fundamental idea of the project is that the effort re-
quired to develop new parallel solvers can be substantially reduced, because
the common infrastructure provides a good starting point for new develop-
ments. Furthermore, interoperability of packages supports a broad set of new
solvers for coupled multi-physics applications that are a critical requirement
for advanced high-fidelity simulations.

The library deal.II [10] is a general purpose finite element code written in
C++. It uses object-oriented and data encapsulation techniques to break the
analysis into smaller blocks that can be arranged to fit the user requirements.
The library supports different applications covering a range of scientific ar-
eas and specific algorithms without imposing a rigid framework. The authors
invested a lot of effort to avoid the computational costs associated with an
abstract object-oriented architecture. The paper presents a detailed descrip-
tion of the abstractions chosen for defining the mesh, the numbering of degrees
of freedom, the linear system solver, the input and output features, and the
interfaces to other softwares, like visualization tools. The work presents many
publications showing results obtained with the library in different fields such
as mathematical error analysis for finite element discretization, incompress-
ible and compressible fluid flow, fluid-structure interaction, magnetohydrody-

4http://www.sandia.gov/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 19

namics, biomedical inverse imaging problems, fuel cell modeling, simulation
of crystal growth, and nuclear reactor simulations. They present results of a
compressible flow and a biomedical imaging application with up to 68,000 lines
of code on top of deal.II.

ViennaX is a plugin execution framework for scientific simulations pre-
sented by Weinbub et al. [11]. The framework functionality is based on the
notion of a task, which is implemented as a plugin. It is an open source code
designed for modularization and parallelization. The plugin system facilitates
the utilization of existing functionalities as well as new implementations. A task
can be defined with arbitrary data dependencies which are used by ViennaX
to build a task graph. By using MPI, the framework executes the dependence
graph based on either a serial or a parallel computing. An input configuration
file in XML (Extensible Markup Language) 5 indicates the plugins to be used
during the course of execution. Results obtained by this work include applica-
tions based on the Mandelbrot set and partial differential equations with up
to 67 million degrees of freedom simulated on a cluster.

The GeMA [12] (Geo Modeling Analysis) framework, presented by Carlos
Augusto in his DSc dissertation in April of 2016, was designed to support the
development of new multiphysics simulators, and the integration with pre-
existing simulators. The main goal is to speed up code development, with
support functions for a extensible and modular environment, allowing engineers
to focus on the physical problem formulation.

1.3.2
Topology Optimization Analysis

The theory about topology optimization has recently received much at-
tention when compared to practical challenges in developing efficient and mod-
ular codes, especially when the goal is to solve complex and large-scale prob-
lems with millions of degrees of freedom (dofs). Most computationally oriented
papers in topology optimization, which rely on the finite element method, em-
ploy either triangular or quadrilateral elements with linear interpolation of the
displacement field and constant density field. However, it has been shown that
these elements suffer from numerical instabilities such as checkerboard pat-
terns [13–15]. Although regularization schemes such as filtering may be used
to suppress the numerical instabilities, these techniques often involve heuris-
tic parameters that can augment the optimization problem and can lead to
significant cost increases [16,17]. Recently, polygonal discretization have been
proposed to achieve stable topology optimization formulations using low or-

5https://www.w3.org/TR/REC-xml/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 20

der elements (degrees of freedom sampled at the nodes and constant design
variable within the element) as reported in references [16,18,19].

Several educational codes, e.g. 99-line [20] and 88-line [21], serve as a
resource to the community and were developed to solve specific topology op-
timization problems, with an implementation that mixes the analysis routines
and the optimization formulation. The main goal of these codes was to in-
troduce the concept of topology optimization in a compact and simple way,
rather than achieving flexibility when solving more general problems. Different
versions of these codes are necessary to be implemented if we need to change,
for example, the finite element analysis to deal with polygonal meshes, or if
we want to change the optimization formulation, e.g. from compliance mini-
mization to compliant mechanisms [22].

The educational code PolyTop, presented by Talischi et al. in 2012
[18], features a modular Matlab structure to solve topology optimization
problems. Its structure separates the analysis routine and the optimization
algorithm from the specific choice of the topology optimization formulation.
The finite element model and the topology optimization parameters are passed
to the PolyTop kernel by a Matlab script, allowing the user to investigate
different problems without changing the basic kernel. The formalism offered
by this decoupling approach provides an easy way to extend, develop and
modify the code to test different topology optimization formulations. Moreover,
the PolyTop code addresses practical issues regarding the use of polygonal
meshes in arbitrary design domains (rather than boxes). Numerical results
are presented using polygonal meshes with up to 120 thousand elements [18].
However, when dealing with large-scale problems using the PolyTop code, it
is difficult to have total control of memory allocation with a code in Matlab.
Efficient algorithms are necessary to build the filtering sparse matrix, used to
map the design variables into the analysis parameters. The process of building
this matrix is a memory bottleneck of the current PolyTop code, while the
solution of the linear system of equations within the finite element analysis
module is another bottleneck related to the computational performance.

The number of publications focused on solving large-scale problems in
topology optimization has considerably increased – see, for example, the review
paper by Deaton and Grandhi [23]. In 2012, Suresh introduced an algorithm
for large-scale 3D problems in topology optimization [1]. It is an extension of
the 2D topological-sensitivity based method [24]. The 3D model explores the
congruence between hexahedron/brick finite elements and modern multi-core
computer architectures. Suresh presented numerical results with 700 thousand
dofs, solved in 16 minutes in a CPU and, in 125 seconds in a GPU. He also

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 21

obtained results for relatively large-scale problems with 15 million dofs, solved
in 19 hours using a CPU, and in 2 hours using a GPU. He solved an even
greater problem, with 92 million dofs, which took 12 days of processing on the
CPU - no results on the GPU were provided because of memory limitation.
However, the work uses uniform grids (instead of unstructured meshes), which
are susceptible to checkerboard pattern problems [16], as mentioned before.
Recently, Aage and Lazarov implemented a parallel framework for topology
optimization using the method of moving asymptotes [25]. They simulated
fluids and solid mechanics problems with linear scalability up to approximately
800 CPUs on a Cray XT4/XT5 supercomputer. They presented results for a
3D mesh using linear hexahedron elements with almost 15M dofs spending
approximately 5 minutes for each topology optimization iteration. Another
recent work by Amir et al. [26] presents a computational approach to reduce the
time for solving 3D structural topology optimization problems. They obtained
performance improvement by exploiting specific characteristics of a multigrid
preconditioned conjugate gradient (MGCG) solver.

Aage et al. [2] presented a parallel topology optimization framework
using the PETSc library 6. In this work, no mesh input file is read but
the structured grid is automatically generated, and subdivided among the
cluster nodes. The PETSc library is responsible for generating/partitioning
the mesh, assembling the global stiffness matrix, performing the matrix-vector
operations, and solving the linear system of equations. They presented results
for the compliance minimization problem with more than 100 million elements,
using 1800 cores.

In 2014, Yadav and Suresh [27] presented an assembly-free version of the
deflated conjugate gradient (DCG) for solving large linear system of equations,
where neither the stiffness matrix nor the deflation matrix is assembled. The
novelty pursued in the paper is the use of assembly-free deflation. The authors
claim that the solution is particularly well suited for large-scale problems and
can be easily ported to multi-core CPU and GPU architectures. They solved
a 50 million degree of freedom system on a single GPU card, equipped with 3
GBs of memory.

In a previous work, we presented PolyTop++ [28] that contributes for
an efficient and modular code, capable of dealing with different topology
optimization problems, addressing issues related to the use of polygonal meshes
in arbitrary design domains, and offering a hierarchical modular structure,
which is easy to be extended to different finite element solvers, different
topology optimization formulations, and different physics. It consists of a

6https://www.mcs.anl.gov/petsc/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 22

C++ and CUDA (a parallel computing model for GPUs) [29] alternative
implementation to the serial PolyTop Matlab code, presented by Talischi et
al. [18]. A relevant feature of PolyTop++ is an easy selection between the
CPU or the GPU parallel solution as an input parameter. The software takes
advantage of the C++ programming language and the CUDA model to design
algorithms with efficient memory management, capable of solving large-scale
problems, besides exploring its object-oriented flexibility in order to provide a
modular scheme. The work describes the implementation of different solvers for
the finite element analysis, including both direct and iterative solvers, and an
iterative assembly-free solver. Numerical results for problems with 40 million
degrees of freedom both in 2D and 3D are presented.

The combination of flexibility and high performance has always been
challenging. Many recent publications try to develop a modular code, suitable
to simulate different applications and capable of handling millions, or even bil-
lions, of degrees of freedom. This thesis contributes exactly in this direction.
Despite previous publications of plugin based frameworks for numerical analy-
sis [11], this is a new and unique approach to solve engineering problems. In our
opinion, this is the best way to guarantee a modular and fully flexible frame-
work. In our case, the overhead cost paid for this generalization is very low,
since the classic hierarchical structure of an usual objected-oriented C++ code
is replaced by small and specific plugins defining the behavior of the element
type instead of each element itself. Furthermore, using the Tops [30] library
to represent the geometric model, we can manage large mesh data efficiently
and provide a unified communication protocol between the plugins. Combined
with a parallel and distributed assembly-free iterative solver, we can achieve
good results for both small and extremely large-scale problems with a billion
of elements.

1.4
Document Organization

The remainder of this work is organized as follows. Chapter 2 explains
the theory and formulations of the finite element method and the topology
optimization analysis. Chapter 3 describes the TopSim framework with its
functionality to configure and load the plugins dynamically, all the plugins
created to simulate a linear elastic static and a topology optimization analysis,
using different finite element types and solvers for the linear system of
equations. In Chapter 3, we also present results and a performance analysis
of the framework with tests using only 1 machine with shared memory cores,
investigating the efficiency of the solution with both small and large mesh sizes.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 1. Introduction 23

Chapter 4 describes the extension of the TopSim framework for a distributed
parallel computing. We present the plugins created for domain decomposition
and communication between subdomains using MPI, while OpenMP is used
for a parallel computing inside each subdomain. In Chapter 4 we also present
the results and a performance analysis for simulation of hundreds of millions
and even a billion of finite elements on the Blue Waters Supercomputer.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

2
Theory and Formulations

2.1
Finite Element Method

The finite element method is one of the most popular numerical methods
for solving physical problems in continuum mechanics. The method approxi-
mates the physical governing equations, usually partial-differential-equations
(PDEs), as a linearized system of algebraic equations. For example, consid-
ering the static linear elastic problem illustrated in Figure 2.1, the domain is
discretized into a finite element mesh with the displacement field U approxi-
mated by Ue as follows:

Ue(x) =
n∑
i=1

UiNi(x) = NÛe (2-1)

where n is the number of nodes in the element, Ni is the shape function
associated to node i, and Ûe is the nodal displacement of element e.

Figure 2.1: Finite element model of a cantilever beam with linear elastic
material.

The element stiffness matrix is evaluated by performing a numerical
integration over the element volume V e at the Gauss points, as below:

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 25

Ke =
∫
V e

BTCBdV (2-2)

with B representing the strain-displacement matrix defined as:

ε = ∇Ue ⇒ ε = ∇NÛe

∴ B = ∇N;
(2-3)

where ∇ is a differential operator. For the hexahedron element (also known
as brick element), used in many examples in this work, the stresses can be
written as:

σ = Cε

C = E
(1+ν)(1−2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2



(2-4)

where C is the material constitutive matrix, E is the Young modulus, and
ν is the Poisson ratio. For the sake of completeness, considering the specific
brick element, the following matrices are defined:

ε =



εxx

εyy

εzz

εxy

εxz

εyz


; Bi =



∂Ni/∂x 0 0
0 ∂Ni/∂y 0
0 0 ∂Ni/∂z

∂Ni/∂y ∂Ni/∂x 0
0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x


. (2-5)

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 26

The global stiffness matrix is obtained by assembling all the element
stiffness matrices. Each global degree of freedom related to a node in the mesh
will receive the contribution from every element connected to it. Together with
the global forces F applied to the domain (Figure 2.1) and the global nodal
displacement vector U, we arrive at the well-known linear system of equations:

KU = F. (2-6)
for linear problems.

2.2
Topology Optimization

Topology optimization is an area of the structural analysis that usually
requires the use of the finite element method. The main goal of topology
optimization is to find the most efficient material distribution inside a domain
Ω ⊆ RN subject to loads and boundary conditions and minimizing some per-
formance measure. Many topology optimization formulations can be defined
in the form:


min
p

f(ρ,u(ρ))

s.t. : gi(ρ,u(ρ)) ≤ 0, i = 1, ..., Nc

(2-7)

where f and gi are, respectively, the objective and constraint functions, Nc is
the number of constraints, and ρ represents the design variables (e.g. densities).

Here, we consider linear elasticity as the governing state equation, which
is typical in continuum structural optimization. The solution satisfies the
variational problem:

∫
Ω
mE(ρ)C∇u : ∇vdx =

∫
ΓN

t · vds, ∀v ∈ V (2-8)

V = {v ∈ H1(Ω;Rd) : v|ΓD = 0} (2-9)

wheremE is a material interpolation function, C is the stiffness tensor, ΓN and
ΓD are portions of ∂Ω where, the non-zero traction t and the displacements
are specified, respectively, and V is the space of candidate functions.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 27

When the objective function is the structural compliance 1, the opti-
mization problem can be expressed in its discrete form as:


min
z

FTU

s.t. : ATmV (Pz)
AT 1 − v ≤ 0

(2-10)

where F is the nodal load vector, which is independent of the design variables
z, U is the nodal displacement vector that arise from the solution of the system
of equilibrium equations K(mE(z)))U = F, K is the global stiffness matrix,
A is the vector of element volumes, mV is the volume interpolation function,
P is the matrix that maps the design variables z into the element densities
y by means of y = Pz, 1 denotes an array of unit entries, and v is an input
parameter which defines the design volume fraction.

In the so-called SIMP (Solid Isotropic Material with Penalization) ap-
proach [16,18,20,21,23,31,32], the element material properties are considered
constant and the element densities are penalized as follows:

mE(ρ) = ε+ (1− ε)ρp, mV (ρ) = ρ, ε = ρmin (2-11)

where p is the penalty parameter, and ε the Ersatz parameter. The SIMP
method is very popular and has great acceptance in the solution of various
types of problems. However, alternative well-known methods can also be found
in the literature, such as level-set [23, 33–35], phase-field [23, 33, 36], and
topological-sensitivity Pareto-optimal [1, 24] based methods.

Figure 2.2 describes the structure of the topology optimization method
implemented in this work to solve the compliance minimization problem.
The boxes highlighted in yellow represent the main steps of the optimization
algorithm and the convergence is achieved when the change between the
element densities in subsequent iterations lies within the tolerance level and
the final topology is obtained.

The flowchart in Figure 2.2 also shows the decoupling approach between
the FE analysis stage, the constraint stage, and the interpolations functions
chosen for mapping the sensitivities to the design variables. The structure of

1Compliance minimization is the objective function presented in the original code
PolyTop [18].

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 28

Input Domain

PolyMesher Discretization

Objective Function
- FE Analysis

- Sensitivity Analysis

Constraint Function

Update Design Variables

Optimal Topology

10 iterations

50 iterations

150 iterations

Computing Mapping Matrix P

Mapping Sensitivities

Mapping Design Variables

ρ
n

e
w

–
ρ

o
ld

>

 t
o

le
ra

n
ce

Figure 2.2: Topology optimization steps for the compliance minimization
problem.

the discrete optimization problem allows separation of the analysis routine
from the particular topology optimization formulation. The analysis functions
do not need to know about the choice of interpolation functions which
corresponds to the choice of sizing parametrization or the mapping P that
places constraints on the design space. Therefore, a general implementation
of topology optimization in the context of this discussion must be structured
in such way that the finite element routines contain no information related
to the specific topology optimization formulation. Because of this, we define
the analysis module as a collection of functions that compute the objective
and constraint functions. This module communicates with the finite element
module to access the mesh information. An advantage of this approach is that
the analysis functions can be extended, developed and modified independently
of any modification in the topology optimization formulation.

In addition, certain quantities used in the analysis module, such as
element areas A and local stiffness matrices Ke, as well as connectivity of
the global stiffness matrix K, need to be computed only once in the course
of the optimization algorithm, as well as the mapping matrix P. To use a
gradient-based optimization algorithm for solving the discrete problem, we

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 29

must compute the derivatives of the cost functions with respect to the design
variables z. The sensitivity analysis can be separated along the same lines
discussed above. The analysis functions compute the sensitivities of the cost
functions with respect to their own internal parameters. Note that the analysis
functions only compute the sensitivities of a certain function gi with respect
to its internal parameters E and V, i.e.:

∂gi
∂z

= ∂E
∂z

∂gi
∂E

+ ∂V
∂z

∂gi
∂V

. (2-12)

For the compliance problem, f = FTU, therefore we can write:

f = FTU− λT (KU− F) (2-13)

where the second term in the right hand side is equal to zero (i.e. KU = F)
and λ is an adjoint vector. Differentiating the compliance, we have:

∂f
∂x

= FT ∂U
∂x
− λT (∂K

∂x
U + K∂U

∂x
)

∂f
∂x

= (FT − λTK)∂U
∂x
− λT (∂K

∂x
U)

choosing λ such that FT − λTK = 0, we obtain:

F−Kλ = 0

F = Kλ⇒ λ = U

∴ ∂f
∂x

= −UT ∂K
∂x

U.

(2-14)

This means that the FE function that computes the objective function
also returns the negative of the element strain energies as the vector of sensi-
tivities ∂f/∂E (for more details, please refer to [37]):

∂f

∂Ee

= −UT ∂K
∂Ee

U = −UTKeU,
∂f

∂Ve

= 0. (2-15)

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 2. Theory and Formulations 30

The remaining terms in Equation(2-12) depend on the formulation, i.e.,
how the design variables z are related to the analysis parameters. For example,
if E = mE(Pz) and V = mV (Pz) we can write:

∂E
∂z

= PTJmE
(Pz), ∂V

∂z
= PTJmV

(Pz) (2-16)

where JmE
(y) := diag(m′

E(y1), . . . ,m′
E(yN)) is the Jacobian matrix of map

mE, and JmV
(y) := diag(m′

V (y1), . . . ,m′
V (yN)) is the Jacobian matrix of map

mV . The evaluation of expression (2-12) is carried out outside the analysis
routine and the result, ∂gi/∂z, is passed to the optimizer to update the values
of the design variables.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

3
Plugin-based Framework

3.1
Overview

The TopSim framework is a tool to perform large-scale numerical anal-
ysis. Its plugin approach provides a fully flexible and easy to extend environ-
ment, capable of solving different types of numerical problems. The kernel of
the framework has a very simple and basic infrastructure with only a plugin
manager module, responsible for loading the desired plugins at runtime using
an input configuration file. All the features required for a specific application
must be defined inside plugins, with no need to change the kernel. Plugins may
provide or require additional specialized interfaces where others plugins may
be connected to compose a more complex and complete system.

The model representation is the only framework component that cannot
be defined as a plugin. We decided to use the TopS library [30] to handle all
the information about the model. TopS is a compact topological data structure
developed for finite element mesh representation. It is capable of reducing
the required storage space while being able to retrieve all the topological
adjacency relationships in a constant time or in a time proportional to the
number of retrieved entities. By using TopS as the only model representation,
we can manage large mesh data efficiently and provide a unified communication
protocol between the plugins. TopS can store all important model data
shared among different plugins during the analysis. The plugins handle only
specialized algorithms and their private data, while TopS is used as a bridge
to update or retrieve any model data modified by any plugin.

In Figure 3.1, we show how plugins and TopS are combined to solve a
static linear elastic problem. The Host application calls the Static analysis
plugin. This plugin handles the input and output processes during the entire
simulation by using reading and writing plugins. The Reader plugin loads
an input file with the model, populates TopS with all the mesh information,
and creates nodes, elements, and materials. The Static plugin calls a linear
behavior plugin, which requires an integrator plugin to compute the external
forces and a solver plugin to assemble and solve the linear system of equations,

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 32

exemplified here by the Load Control and the Umfpack plugins, respectively.
The model attributes, e.g. nodes and the elements of the mesh, dof indices,
node displacements, and right hand side of the linear system of equations, are
interchanged among plugins through the TopS library.

Static

Host

Analysis
interface

Linear

Behavior
interface

Umfpack

Load

Control

Solver
interface

Integrator
interface

Model
TopS

DOF Indices

Displacement

RHS

System
Solution

A
ttrib

u
tes

Reader

Reader
interface

Mesh

Writer

Writer
interface

Figure 3.1: Example of a framework configuration to solve a static linear elastic
problem.

Advantages of using a single model representation:

– uniform unity;

– efficiency;

– easy of sharing info (the flexibility must be ensured by the chosen model
representation).

3.2
Model Representation

The topological data structure TopS was proposed by Celes et al. [30] in
2005 to represent finite element meshes. It provides a compact structure for
manifold meshes, where elements and nodes are the only topological entities
explicitly stored in memory. At the same time, the library is considered
complete in the sense that all topological adjacencies can be retrieved in a
time proportional to the entities consulted.

The element entity represents any finite element type with an
ordered set of nodes (template). The main element types used in a
typical finite element analysis are defined in TopS, such as triangles

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 33

(TOP_ELEMENT_T3), tetrahedrons (TOP_ELEMENT_TET4), and hex-
ahedrons (TOP_ELEMENT_HEX8). Linear, quadratic, and higher order
elements are considered (Figure 3.2). The node entity represents any finite
element node and may be related to corner nodes, edge nodes, and interior
nodes (Figure 3.2(b)). Beyond the traditional element representation, with
its nodal connectivity, an element also has references to all its neighboring
elements. The same happens with a node, which has reference to one element
connected to it. Any other adjacency relationship in TopS can be derived from
these previous ones.

T3 Q4 Hex6

3.2(a):

T6 Q8 Hex20

3.2(b):

Figure 3.2: Finite element types available in TopS. (a) Linear elements. (b)
Quadratic elements.

TopS also supports the creation and association of a set of attributes to
the nodes, the elements and the model. The attributes can be associated to
all the entities of a same type, e.g. physical quantities related to each node or
element in a numerical simulation. In this work we associate the displacement
attribute to the nodes, the density attribute to the elements, and some global
attributes, such as the simulation step, nodal support and nodal forces, to the
model (Figure 3.3). This functionality in TopS is very useful to manage the
communication of simulation data between mesh subdomains distributed in a
cluster, as will be addressed in Chapter 4.

Algorithm 1 shows the API required by TopS to create attributes in the
mesh. In this example, we create the DISPLACEMENT attribute for each

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 34

mesh

e1 e2

e3 e4

=

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6

= 𝐸

node displacement

element density

Figure 3.3: Example of nodes and elements attributes created in TopS.

node with 6 values to represent all 3 translational and 3 rotational directions.
Each element has 1 value for the DENSITY attribute and the model holds
some global attributes that are not related to every node or element. The
NODAL_SUPPORT attribute is created with 7 values for each node that is not
completely free (n_bc), 1 value for the node id and 6 for the boundary condition
of each node direction. In the same way, the NODAL_FORCE attribute is
created for the nodes with any force applied to it(n_f), with 1 value for the
node id and 3 for the force vector.

Algorithm 1 TopS’ API to create node, element and model attributes.

CreateNodeAttrib(”DISPLACEMENT”, 6);

CreateElemAttrib(”DENSITY ”, 1);

CreateModelAttrib(”NODAL_SUPPORT”, n_bc ∗ 7);
CreateModelAttrib(”NODAL_FORCE”, n_f ∗ 4);

3.3
Plugin Manager

The kernel of the framework is composed by the Plugin Manager. It is
responsible to load and register the plugins in the host system, aside from
providing basic functions for querying plugin objects and interfaces. An input

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 35

configuration file in Lua 1 format is used to tell the host system which plugins
must be load at runtime for the simulation. In Figure 3.4, we show the
configuration file used to run the layout described in Figure 3.1.

Figure 3.4: Configuration Lua file with the plugins selected by the user to run
the simulation.

Every plugin must provide a public initialization function called
PluginOpen, with the signature presented in Algorithm 2, which will be called
right after the plugin is loaded. The function receives as parameters the type
of service the plugin will be connected with, as shown in Figure 3.5 and repre-
sented in the configuration file by the blue color (Analysis, Element, Material,
etc), the name of the plugin (e.g. libname = static, in the config file), and the
TopS model. The PluginOpen function creates an instance (object) of the plu-
gin class and register it in the Plugin Manager using the function AddInstance
(Algorithm 2). The procedure makes all loaded plugins available to be used by
the host system or by other plugins.

1https://www.lua.org/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 36

Algorithm 2 Basic functionality of the Plugin Manager.

PluginOpen(type, name,model);

AddInstance(type, name, obj);

GetInstance(type, name,&obj);

Analysis Static

Behavior Linear

Integrator
Load

Control

PluginService InterfaceService Plugin Interface

Figure 3.5: Examples of types of services and their interfaces to connect plugins.

Figure 3.5 shows the separation of services, service interfaces, plugins,
and plugin interfaces. A service interface is the minimum implementation a
plugin must define to be used. Such as an attempt to have an uniform API, all
services must require at least the following basic functions: Initialize, Finalize,
Release, and QueryInterface. The other important and crucial functions may
vary depending on the main goal of each plugin, such as the function Run
defined in the analysis service, and the function Solve in the linear system
service. Each plugin may define an interface and require the connection of
another plugin to perform the computation of a specific feature. Figure 3.6
depicts an example of the PCG [3] solver for the Linear System service, which
requires the connection of a sparse matrix service and a preconditioner service,
implemented in this case by the CSRMatrix and Jacobi plugins, respectively.

A plugin is responsible for defining if a required interface is crucial for
its proper functioning or if it is just an option for a specific feature. In other
words, a plugin must define the need of a connection or any other dependent
plugin. In the case of the PCG, in Figure 3.6, a sparse matrix plugin must
always be connected to make it work, however a preconditioner plugin may be

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 37

Linear System PCG

Jacobi

CSR

Matrix

Figure 3.6: The PCG plugin connected to the Linear System service, and
requiring the connection of a sparse matrix and a preconditioner plugin.

avoided and the PCG algorithm will still work. Figure 3.7 shows an example
of how the PCG plugin uses a basic function of the Plugin Manager to require
the dependent services.

Figure 3.7: PCG plugins requiring the connection of dependent services.

The framework has also some useful tools to make easier the cre-
ation and connection of a new plugin, as shown in Algorithm 3. The
INTERFACE_MEMBER macro helps the user with the declaration of
some common functions that every plugin interface must have. As the
PluginOpen function is always required, every plugin must also define which
interfaces are to be connect with. The INTERFACE_CODE# are compact
macros that help the user to specify which interfaces the plugin need to be
connected.

Figure 3.8 shows how the PCG plugin is created and loaded by the Plugin
Manager, with the combination of the interface macro and the PluginOpen
function.

By using this approach, we can reach a desirable level of flexibility to
extend and specialize the code without defining long and fixed APIs or the
need to change the kernel for every new desired feature. The interpretation
of the configuration file is done by a code in Lua, and the dynamic libraries
are loaded by functions from the current operational system, making the code
portable for different platforms.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 38

Algorithm 3 Plugin Manager useful functions to define and connect a plugin.

TOPSIM_PLUGIN_INTERFACE_MEMBER

TOPSIM_PLUGIN_INTERFACE_CODE1(P, T1)
TOPSIM_PLUGIN_INTERFACE_CODE2(P, T1, T2)
TOPSIM_PLUGIN_INTERFACE_CODE3(P, T1, T2, T3)
TOPSIM_PLUGIN_INTERFACE_CODE4(P, T1, T2, T3, T4)
TOPSIM_PLUGIN_INTERFACE_CODE5(P, T1, T2, T3, T4, T5)

Figure 3.8: Creating the PCG plugin using functions from the Plugin Manager.

3.4
Plugins

3.4.1
Analysis, Behavior, Integrator, and Numbering

The framework has three important service categories where the user can
connect plugins to implement the type of analysis, the behavior of the problem,
and the integration between the external environment and the mesh domain
(Figure 3.9).

Analysis Behavior Integrator

Static Linear Load Control

Nonlinear Newton-Raphson

Figure 3.9: Three main services of the framework with their plugin definitions.

Figure 3.10 gives an idea of how these three plugins interact with each
other to run the simulations. The Static plugin checks if the required plugins,
i.e. reader, writer, and behavior, are available to be used. After reading the

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 39

input model, the initialization of the Linear behavior plugin is called to process
all the data necessary to solve the analysis step. In this initialization, the
Linear plugin also checks if an integrator plugin and a linear solver plugin
are available. We also developed a numbering plugin responsible to traverse
the entire model and designate an equation number for each free degree of
freedom present in the model, considering the boundary condition informa-
tion. This service category, called here as Numbering, can be very useful if,
for some reason, the user needs to use a different number scheme. Once the
dof numbers and the external forces are computed, the behavior plugin calls
the initialization and the assembling process from the linear system service.
Because there are different ways to make the assembly of the stiffness matrix
and each type of solver may use a different storage scheme, this stage is defined
in the solver plugin. After each simulation step, the nodal displacements are
updated in the model, and depending on the framework configuration, it can
be written in an output file by the writer plugin.

Analysis::

Run

Static::

RequiredPlugins

Static::

ReadModel

Static::

InitAttributes

Behavior::

Initialize

Behavior::

SolveStep

Behavior::

WriteStep

Behavior::

Finilize

Integrator::

Initialize

Integrator::

ExternalLoad

Solver::

Assembly

Preconditioner::

Build

Solver::

Solve

Integrator::

UpdateResults

LoadControl::

NodeDisplacement

Solver::

Initialize

Numbering::

ComputeDofs

Figure 3.10: Framework main stages, showing how the plugins interact with
each other to run the simulation.

The Nonlinear plugin was also developed to simulate structural problems
involving geometrical nonlinearities [38, 39]. The system of equations can be

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 40

solved by means of an incremental-iterative procedure, based on the following
general equation:

Ki
jδuij+1 = δλij+1p + rij (3-1)

where superscripts and subscripts refer to step and iteration numbers, respec-
tively, Ki

j is the tangent stiffness matrix, p is the reference load vector, rij
is the unbalance load vector, δuij+1 is the unknown incremental displacement
vector, and δλij+1 is the unknown incremental load factor.

The Newton-Raphson behavior plugin was also created to be used to-
gether with the Nonlinear analysis plugin and the Load Control integrator
plugin. The solution scheme, in the Newton-Raphson plugin, computes the
external loads at the first iteration of each incremental step and keep it
constant throughout the remaining iterations within the step, as illustrated in
Figure 3.11. Hence, the load factor is

δλij =

 prescribed value forj = 1
0 forj ≥ 2.

(3-2)

Figure 3.11: Load control method.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 41

3.4.2
Reader and Writer

Reader Writer

NFReader NFWriter

Figure 3.12: Reader and writer services with their plugin definitions.

The reader and writer services have a very simple interface. Basically,
a reader plugin must define a function to set the name of the input file and
a function to read the file to memory. We implemented the NFReader plugin
to read files in the neutral file format, generated by the PolyMesher [40]. A
new plugin can be developed and used in the framework to support different
file formats. The most important thing in the reading process with plugins is
the mechanism to query a reading section interface of a certain service. For
example, to read the material info, the NFReader plugin first requests the
instance related to the specific material, here called "ISOTROPIC", and then
the reader plugin can query the reading section interface from this object,
which knows exactly how to read the specific information about the isotropic
material (Figure 3.13). The same mechanism works for other blocks of the
neutral file, such as the types of elements and types of analyses. Each one can
be read by its own plugin with no need to change the reader plugin.

Figure 3.13: Piece of code to query and call the read section interface from the
Isotropic plugin during the model reading process.

The NFWriter plugin follows the same idea of the reader plugin. It was
developed to write the model and the results of a simulation in the neutral
file format. We use this format so we can visualize the results in a tool for
post-processing finite element models, called Pos3D. Again, the flexibility of

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 42

the plugin approach allows the framework to be extended to write the results
in a different file format, supported by a different post-processor. We plan, as
a future work, to write the results also in the ParaView file format 2, since the
visualization of extremely large-scale problems may require, in some cases, a
tool capable to post-process the results distributed in a cluster.

3.4.3
Sparse Matrix, Linear System, and Preconditioner

The coefficient matrix associated to the linear system of equations that
arises when a numerical method is employed for solving a structural problem
is usually sparse, i.e. most of its elements are zero. It is almost mandatory
the use of techniques to take advantage of this property to reduce memory
requirements, even for problems with just a few thousands of elements. In a
sparse matrix format, only the non-zero entries are stored. Depending on the
number and distribution of the non-zero entries, different data structures can
be used. The trade-off is between the complexity of accessing an individual
element and the need of additional data structures to recover the original
matrix unambiguously.

We implemented plugins for the sparse matrix service with two different
formats: Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) [41]. These formats were chosen because of their support for efficient
access and matrix operations. The CSR format stores a sparse (m×n)M matrix
by means of three arrays: RowPtr, ColInd, and Values. The Values array holds
all the non-zero entries from left to right and from top to bottom order. The
RowPtr array is of length (m + 1) and each entry has the information where
the corresponding line begins in the Values array. The last entry represents the
total number of non-zeros present in the matrix and is used to show where the
Values array ends. The ColInd array has the same length of the Values array
and holds the column index in M of each non-zero value. For example:

M =


1 0 7 0
0 4 0 0
7 0 2 0
0 0 0 9

 (3-3)

2http://www.paraview.org/

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 43

RowPtr = [0 2 3 5 6]

ColInd = [0 2 1 0 2 3]

V alues = [1 7 4 7 2 9]

(3-4)

The CSC format is analog to the CSR format. The difference is that the
RowPtr array becomes the ColPtr array, with the information of where the
column begins in the Values array, and the ColInd array becomes the RowInd
array, with the row index in M of each non-zero value. These two plugins are
used with the linear system plugins, and they play a very important role in
iterative solvers, where the matrix-vector multiplication is the main bottleneck.

Another sparse matrix storage scheme very popular in finite element
codes for structural mechanics is the Skyline scheme (SKS). Its popularity
comes from the fact that the skyline allocation is preserved during the process
of solving the linear system of equations by a Gauss elimination type of
method [42]. In order to improve the computational efficiency, the system of
equations from finite elements must has a relatively small skyline where all
fill-in entries fall inside it. We implemented a plugin with the skyline scheme
together with the Crout linear solver, described later.

The linear system solver is very important in FEM and topology opti-
mization, usually being the performance bottleneck of the simulation. Accord-
ingly, choosing a solver type that is more suitable for a specific problem or
improving the solver performance will result in a major impact on the sys-
tem overall performance. Considering that we are solving elasticity problems,
the corresponding coefficient matrix of the linear system is usually symmet-
ric, positive-definite, and sparse. We implemented modules to handle direct
and iterative solvers, assembling the global stiffness matrix and also an itera-
tive element-by-element (assemble-free) solver, in which only the local stiffness
matrix of each finite element is computed. When the global stiffness matrix
needs to be computed, the process consists in first traversing all mesh elements
and then computing their contributions in the triplets format. Then, the list
of triplets, composed by the global degrees of freedom from the entire mesh,
is used to assemble the global stiffness matrix in the sparse format. Figure
3.14 shows all the implemented services and plugins necessary to solve a linear
system of equations.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 44

Solver

Crout

Umfpack

PCG

EbEPCG

CSC

Precond Sparse Matrix

Jacobi CSR

Pardiso

Own implementation
3rd party library

Figure 3.14: Services and plugins created in the framework to solve a linear
system of equations.

Direct Solvers

We implemented the Crout matrix decomposition as one of the direct
solvers available in the framework. Crout is an algorithm that decomposes the
matrix into a lower triangular matrix (L), an upper triangular matrix (U) and,
although not always needed, a permutation matrix (P). The algorithm was
designed for factorizing large sparse matrices, since the computational cost of
sparse solvers is determined by the number of non-zero entries. The skyline
sparse scheme (SKS) is used exclusively with this solver in the framework,
since the solver algorithm takes advantage of the skyline allocation during the
fill-in stage. However, a general sparse method, which stores only the non-zero
entries rather than a skyline, becomes more efficient for very large problems
(over hundred of thousands of equations), such as the CSR and CSC, described
before.

The UMFPACK is a free package with a set of routines for solving sparse
linear systems using the Unsymmetric MultiFrontal method [43]. We use its
C interface to implement a serial direct solver in the framework, using a third
party library. The solver package needs the global stiffness matrix stored in the
CSC format. We convert the global list of triplets to the sparse format by means
of the package routine umfpack_dl_triplet_to_col. The package routines
umfpack_dl_symbolic, umfpack_dl_numeric, and umfpack_dl_solve are
called in this sequence to solve the linear system.

PARDISO is a shared-memory multiprocessing parallel direct solver
developed by Intel Corporation [44]. The package can be used for solving large
sparse symmetric and unsymmetric linear systems of equations. In this work, it
has been used as an alternative solver with a powerful parallel direct approach.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 45

The algorithm requires the global stiffness matrix stored in the CSR format.
The assembling process is the same used with the UMFPACK solver, except
for the fact that the package does not provides a function to convert from the
triplet format to a sparse format. We implemented this conversion inside the
sparse matrix plugin. The feature receives the list of triplets and mount the
sparse matrix arrays. With the PARDISO solver we store only the symmetric
part of the global stiffness matrix to reduce even more the required memory.
The package routines can solve the linear systems in parallel using all the cores
available in a very efficient way, as shown in the results.

Iterative Solvers

We created a plugin to implement the preconditioned conjugate-gradient
(PCG) solver [3]. The PCG is an iterative method for solving linear systems
of equations with symmetric and positive-definite matrices. Due to the ill-
conditioned nature of the linear system of equations in topology optimization
problems, this method needs many iterations to converge, as pointed out
by Wang [45]. Therefore, the use of good preconditioners is necessary when
dealing with large-scale problems. The PCG plugin requires the connection of
a preconditioner service and the connection of a sparse scheme service. We
implemented the Jacobi preconditioner [3] primarily because of its simplicity
and easy parallelization. The global stiffness matrix is assembled in the same
way as in the PARDISO solver, using a CSR sparse scheme and storing only the
symmetric part of the matrix. Algorithm 4 shows the basic steps of the PCG
method [3]. We can notice that each iteration needs a matrix-vector product
and some inner products in the order of the number of unknowns. The matrix-
vector product becomes one of the bottlenecks of the overall simulation.

Another issue for solving large-scale problems is the computation of
the global stiffness matrix (K). Assembling K is the main bottleneck of the
PolyTop, as presented by Talischi et al. [18] and shown in Table 3.1. In
Duarte et.al [28], 2015, we presented a new parallel algorithm to perform
‘assembly-free’ PCG solver using polygonal meshes in GPU. We have chosen
the ‘assembly-free’ PCG solver by Augarde et al. in 2006 [46] because in this
method the full matrix K is not required at all. Instead, only the element
stiffness matrices are used to solve the linear system of equations. We know
that the storage for all the individual element stiffness matrices will exceed
the memory taken by the global assembled matrix. However, there are issues
by using a global stiffness matrix to solve large-scale problems. Using a direct
solver with global stiffness matrix is impractical because of the extra memory

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 46

Algorithm 4 Conjugate gradient with preconditioner.
x0 is an initial guess, r0 = b− Ax0
for i = 1, 2, ... do
Solve Kwi−1 = ri−1
ρi−1 = rHi−1wi−1
if i = 1 then
pi = wi−1

else
βi−1 = ρi−1/ρi−2
pi = wi−1 + βi−1pi−1

end if
qi = Api
αi = ρi−1/p

H
i qi

xi = xi−1 + αipi
ri = ri−1 − αiqi
if xi accurate enough then
quit

end if
end for

needed for the factorization process (this is shown later in the results section
of this work). Using an iterative solver with global stiffness matrix could be
an alternative. An element-by-element solution eliminates both the assembly
matrix bottleneck and the high memory consumption to store it. Combined
with a parallel algorithm, this strategy is free to handle extremely high problem
sizes.

In this work, we decided to improve the element-by-element solver from
our previous work [28] to increase its flexibility and adequacy for an efficient
parallel algorithm, to be used in a cluster of computers. It is important to
mention that an ideal element-by-element solution for large problems would
be to store no local stiffness matrix at all, and calculate the required member
of the local matrix whenever it is needed. But for some types of elements, the
process of calculating the local stiffness matrix leads to a high computational
cost. Nevertheless, identical elements share identical local matrices, allowing
the simulation of large-scale problems to be done with small memory footprint,
as long as we can model the domain with multiple instances of a small set of
elements.

Our previous element-by-element algorithm [28] suffered from race con-
dition issues when two different parallel threads needed to write in the same
memory position. In the parallel implementation of our EbEPCG, the matrix-
vector product computed in two different threads may have to write results in
the same dof, as shown in Figure 3.15. To address this problem, we used an
approach based on graph coloring. The idea consists in computing the matrix-

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 47

Mesh size 2.7 K 7.5 K 30 K 120 K

Assembling K 37.8% 41.1% 37.2% 28,5%

Solving KU = F 23.0% 28.6% 32.1% 29.8%

Mapping z,E and V 6.1% 6.8% 6.9% 20.1%

Update Design Vars. 1.1% 2.1% 2.8% 1.4%

Plotting 16.0% 7.7% 3.3% 1.8%

Others 15.7% 12.8% 17.7% 18.4%

Table 3.1: PolyTop code runtime profile for different number of elements. The
assembling of the global stiffness matrix K is the most expensive part of the
code [18].

vector product of a set of elements that do have no nodes in common. By
considering enough groups (colors), the matrix-vector product is computed
with no race condition. The greedy coloring algorithm [47] was used there, but
this includes one more step during the preprocessing stage.

On the other hand, in a strategy where each thread is assigned to a finite
element node, race conditions should never appear. Furthermore, this approach
fits well with our choice to use a topological structure for mesh representation.
TopS provides easy access to the neighboring elements of a node to compute
their contributions. The most important advantage of this solution is that all
nodes can be processed in a fully parallel way without any type of serialization.

Figure 3.16 illustrates a node visiting all its neighboring elements during
the matrix-vector product. Since the transverse of the neighboring elements
is just for consulting data and not for writing, all nodes can be processed
in parallel with no risk of race condition. However, one disadvantage of this
approach is the fact that a single element will be visited many times by different
nodes. In our opinion, since the number of neighbors is always limited and
small (4 for Q4 elements, 8 for hexagonal elements, and 6 for hexagonal prism
elements) and this cost will be shared among the many cores present in a multi-
core machine or in a cluster, the slightly lower performance here is negligible
and compensated by the elimination of the coloring step.

Algorithm 5 presents a pseudo-code for the matrix-vector product used
in the EbEPCG solver. A parallel loop through the nodes uses the TopS
functions to retrieve the node dofs and neighbors, computing each dof in
sequence, visiting each neighbor element to get its own node dofs and local
stiffness matrix. The corresponding element dof is used to multiply the related
matrix entry by the input x vector and add the result in the node dof position

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 48

1
1

1
0

 9

 8

 7

6

 5

 4

 3

 2

 1

0

q

=

pe1qe1

thread 0

Ae1

0 1 4 5 8 9 10 11

0
 1

 4
 5

 8
 9

 1
0
 1

1

dofs

th0 th1

thread 1

4
 5

 8
 9

 1
2

 1
3

pe2qe2 Ae2

4 5 8 9 12 13

=

Figure 3.15: Race condition on the matrix-vector product of two different
elements computed in parallel by two different threads. The elements share
common dofs and may have to write in the same memory position in array
q [28].

of the output y vector. The inner loops are not computed in parallel but
they are vectorized with compiler pragma directives to extract the maximum
performance of the machine.

3.4.4
Topology Optimization and Element Types

Topology optimization analysis is an example of a practical engineering
problem with a high computational cost. Here, we focus on compliance min-
imization problems using the SIMP method, where the overall optimization
process requires a finite element analysis inside each iteration. The linear sys-
tem must be updated with the redistribution of element densities. Considering
that a single finite element analysis is already computationally expensive, the
process of updating the global stiffness matrix and solving a linear system
during many optimization iterations is even more challenging when applied to
large-scale problems.

The framework can be easily extended to include the Simp plugin
modeled as a new type of analysis and replacing the Static plugin of the
previous example. All other plugins presented previously to perform the FEM
can be used with no changes, as shown in Figure 3.17. The issue now consists
of how to update the global stiffness matrix without rebuilding it from scratch,
since this is a very expensive step. Again, the flexible architecture of the

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 49

3.16(a): 3.16(b):

3.16(c): 3.16(d):

Figure 3.16: A node must visit all its neighboring elements during the matrix-
vector product.

framework allows us to specialize the sparse matrix plugins, with auxiliary
arrays and a new algorithm, in order to update the global stiffness matrix
entries directly into the sparse format with each new element density without
rebuilding it.

We implemented and used plugins with the classical finite element types
Q4 and Brick8. However, it has been shown that the use of those classical
elements in topology optimization suffer from numerical instabilities such as
checkerboard patterns [13–15]. Indeed, one can use regularization schemes such
as filtering to suppress the numerical instabilities, but these measures often in-
volve heuristic parameters that can augment the optimization problem and can
lead to significant weight increases [16, 17]. Recently, polygonal discretization
has been proposed to achieve stable topology optimization formulations, us-
ing low order elements (degrees of freedom sampled at the nodes and constant
design variable within the element), as reported in references [16,18,19]. There-
fore, we also developed a plugin for the hexagonal prism element, also known
as honeycomb (Figure 3.18), to be used specifically for topology optimization
simulations.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 50

Algorithm 5 Matrix-vector product used in the EbEPCG solver.
{parallel loop}
for node = 1, 2, ... do
TopsGet node_dofs
TopsGet node_neighbors
for dofi = 1, 2, ..., node_dofs do
for node_neighbors = 1, 2, ... do
TopsGet elem_dofs
TopsGet elem_stiff_matrix
for dofj = 1, 2, ..., elem_dofs do
y[dofi]+ = elem_stiff_matrix[j ∗ n+ i] ∗ x[dofj]

end for
end for

end for
end for

Simp

Host

Analysis
interface

Linear

Behavior
interface

Umfpack

Load

Control

Linear System
interface

Integrator
interface

Figure 3.17: The topology optimization Simp plugin is modeled as a new type
of analysis. All plugins previously used for the FEM example can be connected
with no change.

The element services must provide information about the geometry of the
element, e.g. area and volume, its shape functions, material behavior, number
of nodes, number of active dofs per node, integration points, stress components,
internal forces and the most important, the algorithm to be used to compute its
local stiffness matrix. We believe that the use of plugins to define the behavior
of the finite element type, instead of defining the finite element as an object
itself in the model representation, is one of the most important advantages and
contribution of this work.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 51

Element

Q4

Brick

Hexagonal Prism

Figure 3.18: Element types implemented in the framework, including the
hexagonal prism element.

In Figure 3.19 we show a summary of all plugins described up to now.
The ability of the framework to deal with increasingly complex and diverse
problems depends only on the creation and improvement of new services
and plugins. Later in this work, we will present the plugins developed for
distributed computing, with the creation of services for mesh decomposition,
merging the results and generation of structured meshes distributed directly
into the nodes of a cluster.

Analysis Behavior Integrator Element Material

Solver Reader Writer

Static Linear Load Control Isotropic

Crout

Umfpack

NFReader NFWriter

Own implementation
3rd party library

Nonlinear

PCG

EbEPCG

CSC

Precond Sparse Matrix

Jacobi CSR

Q4

Brick

Hexagonal Prism

Pardiso

Numbering

DOF

Simp

Newton-Raphson

Figure 3.19: Summary of all services and plugins described up to now in the
framework.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 52

3.5
Results

We investigate the performance of the features implemented in the frame-
work for solving a static linear elastic problem and a topology optimization
problem. We validate our numerical results by comparing them with analyt-
ical solutions and related work from literature. The performance is analyzed
regarding the use of memory, the computational performance and the scalabil-
ity of the approach with the available computational resources. Because solving
the linear system of equations is the most expensive computational stage of the
simulation, it became our main focus in terms of performance maximization.
All the examples presented in this section were simulated using the machine
specification listed in Table 3.2, except when mentioned differently.

Computing Platform

O.S. Ubuntu 14.04 LTS

Language C++

CPU Intel Core i7-4930K

Clock @3.40GHz

Cores 12

RAM 64.0GBs

Library OpenMP [48]

Table 3.2: Computing platform used in the numerical simulations.

3.5.1
Linear Static Analysis

The first example corresponds to the Cook´s problem [49], using Q4
elements and the boundary conditions shown in Figure 3.20. We evaluated the
behavior of the system with a mesh varying from 16 K to 1 M elements.

The results are presented in Figures 3.21 and 3.22. The color scale
represents the displacement of the nodes in Y direction. The analytical solution
of the Cook´s problem consists of a Y displacement of 24 mm at the C
point (see Figure 3.20). In Figure 3.22, we show how the numerical solution
approaches the analytical solution as we increase the number of elements of
the mesh, as expected.

Figure 3.23 illustrates the time to solve the problem with different mesh
sizes using the solvers implemented in the framework. We can notice that the

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 53

C p = 1

Ε = 1
𝜈 = 1/3

48

44

16

Figure 3.20: Geometry and boundary conditions of the Cook´s problem.

Figure 3.21: Results of the linear analysis of the Cook´s problem. The colors
represent the displacement of the nodes in the Y direction.

direct solvers PARDISO and UMFPACK perform better than the iterative
solvers for this problem. The PARDISO solver is the fastest one with its parallel
direct approach. It is almost 15 times faster than the UMFPACK solver, the
second fastest one, for a mesh with 1 million elements.

The direct solvers are not so efficient when considering the memory usage

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 54

2.10E+01

2.15E+01

2.20E+01

2.25E+01

2.30E+01

2.35E+01

2.40E+01

2.45E+01

64 256 1024 4096 16384 65536 262144 1048576

D
ef

le
ct

io
n

 a
t

p
o

in
t

C
 (

m
m

)

No. of elements (Q4)

Deflection

Reference UMFPACK

Figure 3.22: Results of the linear analysis of the Cook´s problem. The nu-
merical solution approaches the analytical solution as the number of elements
increases.

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

16384 65536 262144 1048576

Ti
m

e
(s

)

No. of elements (Q4)

Linear System

Crout UMFPACK PARDISO PCG EbEPCG

Figure 3.23: Time to solve the Cook’s problem using the solvers implemented
in the framework.

(Figure 3.24). The Crout solver is the most expensive, as expected, since the
skyline storage scheme wastes memory allocation with zero entries, despite
the fact that some of them are used during the decomposition stage. The
UMFPACK and PARDISO solvers also present a high memory consumption,
even using an efficient sparse matrix scheme, since a direct solver approach
requires an extra memory for the decomposition step. On the other hand,
the results confirm that the memory required by iterative solvers is much
smaller and hence they are more suitable for large-size examples. For the curve
associated to the element-by-element (EbEPCG) solver, Figure 3.24 shows that
its growing rate is even smaller than a conventional PCG method, where a

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 55

global stiffness matrix is assembled and stored in memory.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

16384 65536 262144 1048576

M
em

o
ry

 (
M

B
s)

No. of elements (Q4)

Linear System

Crout UMFPACK PARDISO PCG EbEPCG

Figure 3.24: Memory used to solve the Cook’s problem using the solvers
implemented in the framework.

A 3D example was also tested using the Brick plugin, implemented in
the framework to model the hexahedron element (Brick8). We solved the
3D Cantilever Beam example with the geometry and boundary conditions
presented in Figure 3.25(a). Due to the symmetry of the problem, only
half of the domain was considered, and the original problem was simulated
applying the extra boundary conditions shown in Figure 3.25(b), where the
displacements of all nodes on the middle face of the beam are set restrained
in Z direction.

F

3.25(a):

F

3.25(b):

Figure 3.25: 3D Cantilever Beam problem: (a) geometry and boundary condi-
tions of the problem; (b) extra boundary conditions to restrain the displace-
ment of the nodes in Z direction.

The results were validated with Abaqus on a machine using the speci-
fications listed in Table 3.3. Figure 3.26 shows an image of Abaqus software

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 56

post-processing the results. The colors represent the displacement of the nodes
in Y direction. The displacement of the red dot in Figure 3.26 is -5.741 mm
in Abaqus and -5.743 mm in TopSim using the EbEPCG solver. Abaqus also
uses a Krylov method with a preconditioner.

Computing Platform Abaqus

O.S. Windows Server 64-bit

Language FORTRAN

CPU Intel Xeon X5650

Clock @2.67GHz

Cores 24

RAM 24.0GBs

Table 3.3: Computing platform used to compare the numerical results with
Abaqus.

Figure 3.26: Post-processor of Abaqus with the results of the 3D Cantilever
Beam problem. The colors show the displacement of the nodes in Y direction.

Abaqus was also used in this work for comparison purposes, since it
is a very known tool, used by many groups in academy and in industry for
numerical analyses. Figure 3.27 shows the comparison between the iterative
solver of Abaqus and the PCG solver implemented in TopSim, considering that
both are iterative solvers assembling the global stiffness matrix in a sequential
way (using just 1 core of the machine). Our main goal with this experiment is to
check how efficient is the TopSim framework compared with a commercial and
well accepted software. The results obtained show that TopSim is faster than
Abaqus when the problem size varies from 96 K elements to 768 K elements,
while Abaqus performs better for a mesh with 1.5 M elements. The PCG solver
implementation is not optimized in the framework, since the EbEPCG is the
main focus of our work.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 57

0

200

400

600

800

1000

1200

1400

1600

96000 127776 324000 768000 1500000

Ti
m

e
(s

)

No. of Elements

Static Analysis (Iterative Solver)

Abaqus It PCG

Figure 3.27: Time to solve the 3D Cantilever Beam problem using the iterative
solver from Abaqus and the PCG from TopSim, both considering only 1 core
of the machine.

We also compared the direct solver presented in Abaqus with the Pardiso
solver used in TopSim as a third part library, still assembling the global stiffness
matrix and using only 1 core of the machine (Figure 3.28). TopSim with the
Pardiso library is again faster than Abaqus and is capable to solve the problem
with 768 K elements, while Abaqus requires more memory than it is available
on the machine. Nevertheless, both systems were unable to solve the example
with 1.5 M elements, due to the high memory footprint required by their
respective direct solvers.

0

500

1000

1500

2000

2500

3000

3500

96000 127776 324000 768000 1500000

Ti
m

e
(s

)

No. of Elements

Static Analysis (Direct Solver)

Abaqus Di PARDISO

Figure 3.28: Time to solve the 3D Cantilever Beam problem using the direct
solver of Abaqus and the PARDISO solver of TopSim, both using only 1 core
of the machine. Abaqus was not capable to solve the examples with 768 K and
1.5 M elements due to memory limitations.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 58

The results using only 1 core are important to evaluate if the plugin
approach interferes with the performance of the TopSim system. In both
examples, with iterative and direct solvers, the TopSim framework was able
to handle large meshes as good as Abaqus, and even larger problems with the
Pardiso solver. This result demonstrates that all the complexity of the plugin
modeling does not prevents an efficient solution.

However, taking advantage of all available computing resources is essen-
tial for solving such costly numerical analysis. Therefore, we compare in Figures
3.29 and 3.30 the same solvers presented previously but now considering all the
24 cores available in the machine. The parallel solution from Abaqus is very
efficient for both iterative and direct solvers. The iterative solver of Abaqus
has a speedup of 3 times for 768 K elements and 1.5 time for 1.5 M elements
comparing to the PCG of TopSim. In the case of the direct solvers, Abaqus
is still slower than Pardiso, since this library, developed by Intel, is very effi-
cient and takes advantage of all the features present in a parallel multi-core
architecture.

0

200

400

600

800

1000

1200

1400

1600

1800

96000 127776 324000 768000 1500000

Ti
m

e
(s

)

No. of Elements

Static Analysis (Iterative Solver)

Abaqus It PCG

Figure 3.29: Time to solve the 3D Cantilever Beam problem using the iterative
solver of Abaqus and the PCG of TopSim, both using all the 24 cores of the
machine.

In Figure 3.31, we present the results of our implementation of an
element-by-element PCG solver in TopSim, using all 24 cores of the machine.
It is easy to notice that our parallel solution scales very well in the example
with 1.5 M elements. The framework was 10% faster than Abaqus for this
problem. Comparing to the direct solvers, the EbEPCG is also more efficient
for a problem with 324 K elements, as we can see in Figure 3.32. The element-
by-element solution is at least 3 times faster than the direct solvers and takes
almost the same time as the iterative solver from Abaqus, but requiring a

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 59

0

100

200

300

400

500

600

700

800

900

96000 127776 324000 768000 1500000

Ti
m

e
(s

)

No. of Elements

Static Analysis (Direct Solver)

Abaqus Di PARDISO

Figure 3.30: Time to solve the 3D Cantilever Beam problem using the direct
solver of Abaqus and the PARDISO solver of TopSim, both using all 24 cores
of the machine. Abaqus was not capable to solve the examples with 768 K and
1.5 M elements due to memory limitations.

negligible memory since the global stiffness matrix is never assembled and only
one local stiffness matrix is used for all the elements in the mesh, considering
that they are all identical.

0

100

200

300

400

500

600

700

800

96000 127776 324000 768000 1500000

Ti
m

e
(s

)

No. of Elements

Static Analysis (Iterative Solver)

Abaqus It EbEPCG

Figure 3.31: Time to solve the 3D Cantilever Beam problem using the iterative
solver of Abaqus, and the EbEPCG solver of TopSim, both using all 24 cores
of the machine.

3.5.2
Nonlinear Static Analysis

The Nonlinear analysis plugin and the Newton-Raphson behavior plugin
were tested with the Lee´s problem [50], using a mesh composed by 48 K Q4

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 60

0

50

100

150

200

250

300

96000 127776 324000

Ti
m

e
(s

)

No. of Elements

Static Analysis

Abaqus It EbEPCG Abaqus Di PARDISO

Figure 3.32: Time to solve the 3D Cantilever Beam problem using the iterative
and direct solvers of Abaqus the of TopSim, using all 24 cores of the machine.

elements and the set boundary conditions as shown in Figure 3.33.

120

24 96

F

Ε = 720
𝜈 = 0.3

Figure 3.33: Geometry and boundary conditions of the Lee´s problem.

The incremental-iterative solution procedure was carried out with 20
steps, and the maximum number of iterations allowed in it step was set to
10. The convergence criterion was established in terms of the Euclidean norms
of the unbalanced forces (residual) and the tolerance (TOL) was set as 0.001.
Figure 3.34 shows the deformed configurations of the structure corresponding

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 61

to load steps 1, 5, 10, and 17, respectively. The results obtained here are in
very good agreement with the ones from the literature [38,39,50].

3.34(a): 3.34(b):

3.34(c): 3.34(d):

Figure 3.34: Results for the Lee´s problem: deformed configurations in steps
(a) 1, (b) 5, (c) 10, and (d) 17.

3.5.3
Topology Optimization Analysis

The TopSim framework was also used to simulate a topology optimization
analysis. Table 3.4 presents the parameters used in the optimization process.
We adopted the SIMP method with a penalty continuation from 1 to 3 with
steps of 0.5, and a maximum of 50 optimization iterations in each step. The
volume fraction constraint was set to 0.3 of the total volume domain.

Figure 3.35(a) shows the geometry and boundary conditions of the 3D
Cantilever Beam with the concentrated force applied at the center of the left
face. Again, due to the symmetric nature of the problem, the original conditions
are simulated with the extra boundary conditions in the symmetry plane as
shown in Figure 3.35(b). The example was simulated on the same computing
platform listed in Table 3.2. Figure 3.35(c) shows the results for the optimal
topology using 1.5 million hexahedron elements.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 62

Optimization Parameters

Method SIMP

Penalty p ∈ [1, 3]; ∆p = 0.5

Vol. Fraction 0.3

Max. Iterations 50

Table 3.4: Parameters used in the topology optimization simulation.

F

3.35(a):

F

3.35(b): 3.35(c):

Figure 3.35: Topology optimization analysis of the 3D Cantilever Beam prob-
lem. (a) geometry and boundary conditions applied to the problem; (b) extra
boundary conditions applied to the symmetry plane; (c) final optimal topology

Figure 3.36 illustrates different views of the optimal topology for the
previous example. The density redistribution, concentrated in the center of
the beam and close to the external applied force, is completely consistent with
results obtained from the literature [18, 28,51].

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 63

3.36(a):

3.36(b):

Figure 3.36: Different views of the optimal topology of previous example.

For the performance study, we start with small meshes, with 12 K
elements, and only one penalization factor equals to 3, due to the complex
nature of the topology optimization problem. Considering the fact that the
linear system of equations becomes very ill-conditioned during the optimization
process, the efficiency of the solver is crucial in order to handle large-scale
problems. We can notice in Figure 3.37 that the UMFPACK solver does not
perform very well compared to the other solvers, when the mesh is larger than
4000 elements. On the other hand, the PARDISO solver is the fastest one for
all mesh sizes, followed by the two iterative solvers PCG and EbEPCG.

Regarding the memory used in the topology optimization problem (Fig-
ure 3.38), the PARDISO solver performs as bad as the UMFPACK solver. As
expected, both direct solvers require too much extra memory. In the case of the
PARDISO solver, its excellent performance to solve the system, using an effi-
cient parallel algorithm, worth its high memory consumption. The EbEPCG is
the most efficient in memory usage, since it takes the advantage of the fact that

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 64

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000 12000

Ti
m

e
(s

)

No. of Elements

Time / Iteration (s)

UMFPACK PARDISO PCG EbEPCG

Figure 3.37: Average time to solve one iteration of the optimization process.

all elements use the same local stiffness matrix and a global stiffness matrix is
never assembled.

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

M
em

 (
M

B
s)

No. of Elements

Memory (MBs)

UMFPACK PARDISO PCG EbEPCG

Figure 3.38: Peak memory required to solve the optimization problem.

We present results for larger meshes, with up to 1.5M elements, for the
topology optimization problem presented in Figure 3.39. It can be noticed
that the EbEPCG solver is faster than the PARDISO solver when the size
of the mesh is larger than 300K elements. Moreover, after 700K elements the
PARDISO solver is not able to solve the problem due to its high memory
requirements (the required memory goes beyond the 64 GBytes of RAM,
available on the machine). The memory used by each solver is presented in
Figure 3.39(b). The rate of the PARDISO curve is extremely high compared
to the iterative solvers. The memory required by the PCG solver is bigger
than the EbEPCG because of the global stiffness matrix. The combination

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 65

of the two results presented for the EbEPCG solver shows the potential of
this approach, considering that it is the fastest one with the lowest memory
requirement, providing the capability to handle extremely large-scale problems
even with a single machine.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Ti
m

e
(s

)

No. of Elements

Time / Iteration (s)

PARDISO PCG EbEPCG

3.39(a):

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

M
em

 (
M

B
s)

No. of Elements

Memory (MBs)

PARDISO PCG EbEPCG

3.39(b):

Figure 3.39: Performance analysis of the topology optimization problem for
larger meshes. (a) average time to solve an iteration of the optimization process;
(b) peak memory required to solve the optimization problem.

A second topology optimization example is illustrated in Figure 3.40(a),
with the external applied force at the center bottom of the left face of the
beam and the optimization parameters are listed in Tabel 3.5.

In this case, we simulated the entire beam with 1.5 million hexagonal
prism elements and a volume fraction constraint of only 0.05 of the total
volume domain. We can observe that the behavior of the solution in the middle

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 66

Optimization Parameters

Method SIMP

Penalty p ∈ [1, 3]; ∆p = 0.5

Vol. Fraction 0.05

Max. Iterations 50

Table 3.5: Parameters used in the topology optimization simulation with
hexagonal prism elements.

F

3.40(a):

3.40(b):

Figure 3.40: Topology optimization problem simulated with the entire beam.
(a) geometry and boundary conditions and applied force; (b) final optimal
topology using hexagonal prism elements.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 67

of the beam, with curved formations and no checkerboards (Figures 3.40(b)
and 3.41), is consistent with 2D results using polygonal elements presented in
related works [16,18,28].

3.41(a):

3.41(b):

Figure 3.41: Topology optimization results with different views of the final
optimal topology.

3.5.4
Element-by-Element Approach

An efficient parallel solution for the element-by-element approach is
essential for the overall performance of the TopSim framework, since the linear
system solver is the main bottleneck of the simulation. An ideal result for the
parallel algorithm would be the perfect use of all the cores available on the
machine, with a good load balance between the cores and an efficient use of
cache memory, minimizing the latency in memory access.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 68

Computing Platform

O.S. Windows 7 64-bit

Language C++

CPU Intel i-7 2820QM

Clock @2.20GHz

Cores 8

RAM 8.0GBs

Table 3.6: Computing platform used for the performance analysis of the
EbEPCG.

We use a tool called Vtune from Intel 3 to investigate if our implementa-
tion of the EbEPCG solver is using the computational resources efficiently. We
used the linear static example presented in Figure 3.25(a) with around 127K
hexahedron elements and the computing platform listed in Table 3.6. Figure
3.42 presents a histogram of how long a set of cores runs simultaneously. We
can see that the framework uses 7 and 8 cores in almost all the simulation,
which is considered ideal by Vtune. The period using only 1 core usually hap-
pens during the reading and writing processes. The total average of the overall
simulation is bigger than 6 cores simultaneously.

Figure 3.42: Histogram with the number of cores running simultaneously.

One of the requirements of an efficient parallel solution is a good load
balance among the cores. This is important to avoid that one core finishes its
work earlier and stays idle, waiting for the others to finish the computation.
In Figure 3.43, it is shown the CPU time utilization of all the threads working
during the simulation. Each thread has almost the same time in computation
and so the idle time (bar in gray color) is very small.

Another important parameter in code efficiency is the count of cache
memory misses. Every time a data in memory is consulted by the code and
this data is no longer stored in cache memory, the operational system must

3https://software.intel.com/en-us/intel-vtune-amplifier-xe

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 69

Figure 3.43: CPU time utilization by work threads, showing a good load
balance during the simulation.

retrieve the data from the global memory (RAM). This process increases a
lot the latency of the code since the global memory usually takes 100 clock
cycles more than the cache memory. Using the Vtune tool, we show in Figure
3.44 that our code presents a rate of only 15% of cache misses. We believe
that the element-by-element approach is responsible for this results because
the small size of the local stiffness matrix, in this case only 24 × 24 entries,
can be stored in cache memory during the computation, while with the global
stiffness matrix the data might be retrieved from RAM more frequently.

Figure 3.44: Cache miss rate of the EbEPCG solver.

Figure 3.45 shows the performance of the framework, now using the
computing platform in Table 3.2, when the size of the problem is constant
and the number of cores is increased, and when we try to keep the work load
constant, i.e. increasing the number of elements proportionally to the number
of cores, running the simulation with the number of elements per core almost
constant. The solution obtained shows a good performance when using up to
6 cores, with a speedup of 5.28× from 1 core to 6 cores (Figure 3.45(a)), and
an almost constant time until 4 cores (Figure 3.45(b)). The reason for this
behavior relies in the fact that every 2 cores of the machine share a floating
point unit. Therefore, it is difficult to keep the performance rate with more
than 6 cores, however, results show that the solution is able to take advantage
of the extra computational resource to speedup the simulation.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 3. Plugin-based Framework 70

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14

Ti
m

e
(s

)

No. of cores

Static Analysis

3.45(a):

0

5

10

15

20

25

30

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 11

Ti
m

e
(s

)

El
em

en
ts

 /
 c

o
re

No. of cores

Static Analysis

Elements/core Time (s)

3.45(b):

Figure 3.45: Speedup results for the linear static analysis with hexahedron
elements: (a) performance improvement with 127K elements and different
working cores; (b) almost constant performance for a constant ratio between
number of elements and cores.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

4
Distributed Solution on Clusters

One of the main objectives of this work is to push the mesh size limits
further to billions of elements in a finite element analysis. For this purpose, an
alternative is based on massive computation on supercomputers. The TopSim
framework was extended with a hybrid implementation for distribute and
parallel computing. The challenge here is to adapt our element-by-element
solution to a domain decomposition scheme, as illustrated in Figure 4.1, using
MPI for communication between subdomains and OpenMP for a parallel
computing inside each subdomain, taking advantage of all available cores in
each machine of the cluster.

Figure 4.1: Domain decomposition for the distributed solution in clusters.

The domain decomposition was implemented as a new service and a new
plugin, called Decompose and METIS respectively (Figure 4.2). The creation
of a new service in the framework is important to provide the option to use
different domain decomposition algorithms in the future. We decided to use
the METIS library [52] because it is well known, extremely fast and produces
high quality partitions.

The new domain decomposition feature requires the creation of two new
plugins, responsible for reading and writing the files of the mesh partitions
(Figure 4.2). In practice, with this new functionality, the framework is capable
of receiving an input neutral file with the mesh domain, invoke the METIS

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 72

Reader Writer

ParReader ParWriter

Decompose

METIS

Figure 4.2: Plugins created to decompose, read, and write the mesh partitions.

plugin to decompose the mesh, and write the partition files. Inside the cluster,
each machine reads the corresponding partition file and load its subdomain.

4.1
Distributed Approach

The model representation chosen here for the distributed computing in
the framework was the ParTopS library [53], a natural extension of TopS,
designed primarily to be a distributed topological data structure for finite
element meshes in dynamic analysis of fracture and fragmentation.

Global Mesh

local mesh local mesh

local mesh local mesh

CPU 1 CPU 2

CPU 3 CPU 4

Figure 4.3: Original mesh partitioned into subdomains. Each node or element
belongs to only one local mesh. [53]

The distributed mesh is composed by the union of the disjoint partitions
from the original finite element mesh. Each element or node belongs to only
one local mesh, as shown in Figure 4.3. However, partition boundary nodes
may need to be shared by elements from different partitions. In order to keep
the topological consistency of the mesh in each partition, nodes and elements
are duplicated from their original partition to their neighboring partitions.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 73

In ParTopS, the duplication of the entities is handle by the communi-
cation layer, shown in Figure 4.4. Each machine of the cluster loads its local
mesh, communicates with its neighbors to create the communication layer,
and synchronizes the attributes of the objects to update all subdomains and
to ensure the consistency of the mesh.

=

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6

= 𝐸

node displacement

element density

Figure 4.4: Communication layer created between the partitions. The at-
tributes of the elements and nodes are synchronized to keep the mesh con-
sistent. [53]

The duplication of the elements and nodes to create the communication
layer does not represent a decreasing in efficiency or waste of memory, since
the size of the layer is too small compared to the size of the local mesh in each
partition. The examples simulated in the cluster have hundreds of thousands
elements in each partition with only 1% of the elements duplicated in the com-
munication layer. Moreover, the duplication avoids many extra communication
messages during the simulation to query data from a neighboring partition.

The element-by-element algorithm described previously in Section 3.4.3
can be easily extended for a distributed environment using ParTopS. Consid-
ering that the algorithm computes the nodes of the mesh in parallel, and that
each node must visit all its neighboring elements, the distributed algorithm
computes only the nodes belonging to its local mesh. This way, we can guar-
antee that all the neighboring elements always exist, and the same node will
never be computed twice, as shown in Figure 4.5. After the parallel computa-
tion of all nodes, the attributes of the elements and nodes in the communication
layer are synchronized to update the mesh and make it consistent again.

Exploiting the framework flexibility to develop very specialized algo-
rithms for a specific new feature, the new plugins presented in Figure 4.6 were
created to handle the distributed solution on clusters. The ParEbEPCG and

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 74

Figure 4.5: In the distributed element-by-element algorithm, only the nodes
belonging to the local mesh are computed, in order to guarantee that all the
neighboring elements always exist. [53]

ParJacobi plugins follow the element-by-element algorithm described before,
where only the local elements and nodes of the mesh are computed with
a synchronization after each iteration. The ParSimp plugin was created to
handle the computation of the topology optimization analysis. The auxiliary
arrays required to assign the corresponding physical quantities to the mesh
were created as attributes of the elements and nodes. Each machine of the
cluster performs the topology optimization analysis on its subdomain and
than the attributes are synchronized to update the results for the entire mesh.

Solver

Reader Writer

Precond

ParEbEPCG ParJacobi

ParReader ParWriter

Decompose

METIS

Analysis

ParSimp

Own implementation
3rd party library

Figure 4.6: Plugins developed in the framework specifically for distributed
computing in clusters.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 75

3D Cantilever Beam

Elements DOFs Machines Files size Memory

12 M 39 M 1024 3.4 GBs 32 GBs

40 M 126 M 4096 11.6 GBs 80 GBs

Table 4.1: Size of the files and memory required to decompose the mesh and
run extremely large-scale examples on a cluster.

4.2
Distributed Mesh Generation

The process of generating the mesh and decomposing it can become very
costly and inefficient. Table 4.1 shows two examples with the size of the mesh,
number of partitions, size of all files created, and total memory required to
load the input mesh file and decompose it using the METIS library.

As can be seen in Table 4.1, the decomposition of a mesh with 40 million
elements already has a high computational resources cost, indicating that to
decompose a mesh with a billion of elements would require an unfeasible
amount of memory. The METIS library has a distributed version, where a
cluster of computers can be used to decompose the mesh, but we would still
have to handle extremely large files with the mesh partitions, which are used
as input for simulations with the TopSim framework on clusters.

Another alternative to simulate such large example on clusters would be
to generate the mesh already partitioned and distributed on the nodes of the
supercomputer, considering that we are dealing with only structured meshes.
Figure 4.7 shows an example of the parametric block included in the input
neutral file to set the parameters to generate the distributed mesh. Each node
of the cluster will generate your own local mesh and create the interface objects
used in the communication layer. The boundary conditions are applied to the
model also in a parametric way, from defining the position of the external force,
combined with the faces or nodes that should be restrained or free in the mesh.

Figure 4.7: Parametric block included in the neutral file for the distributed
mesh generation.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 76

We implemented two plugins for the distributed mesh generation, as
shown in Figure 4.8. The BrickBuilder generates a mesh in a box domain
with hexahedron elements and the HexaprismBuilder generates a mesh also in
a box domain with hexagonal prism elements (Figure 4.8).

BrickBuilder

MeshBuilder

HexaprismBuilder

Figure 4.8: Plugins implemented for the distributed mesh generation with
hexahedron and hexagonal prism elements.

By including this new feature, combined with the element-by-element
approach, the framework becomes capable to provide the generation and
simulation of meshes of any size, considering the computational resources
available. From the moment that more machines are available in the cluster,
larger meshes can be easily simulated with the TopSim framework.

4.3
Results

The tests of the distributed computing plugins implemented in the
framework were performed on the Blue Waters Supercomputer. The cluster is
one of the biggest in the world, composed by 22,640 machines, each one with
32 cores, 64 GBs of RAM and 102.4 GB/s of memory bandwidth. The machine
nodes are interconnect in a 3D Torus architecture with a peak bandwidth of 9.6
GB/s. Table 4.2 presents a summary of the specifications of the supercomputer,
while Figure 4.9 shows a picture of the cluster inside its dedicated building.

The primary goal of our distributed implementation is to make the
framework capable of solving extremely large problems. We show results of
the linear elastic static analysis, presented in Figure 3.25, with a much larger
mesh on Blue Waters than the largest size of 1.5 million elements used here
with only one machine.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 77

XE Cabinets XE Compute Node

No. of Cabinets 237 Cores 32

Peak Performance 7.1 PF Mem / Core 4 GBs

Compute Nodes 22,640 Total Mem 64 GBs

Compute Cores 362,240 Peak Performance 313.6 GFs

System Mem 1.382 PBs Mem Bandwidth 102.4 GB/s

Table 4.2: Summary with the specifications of the Blue Waters Supercomputer.

Figure 4.9: Picture of the Blue Waters Supercomputer inside its building.

Figure 4.10 shows the speedup achieved on Blue Waters when the number
of machines is increased from 10 to 1200, each one with 32 cores, considering
a linear static analysis of a problem with 50 million elements. The distributed
solution is able to solve this example in a little more than 3 hours with 10
machines, in 22 minutes with 300 machines, and down to 13 minutes using
1200 machines.

In another example, we tested the framework in a linear static analysis
with an extremely large mesh up to 500 million elements. In order to analyze
the behavior of the distributed implementation, we tested different mesh sizes
with different number of machines, keeping the number of elements per machine
constant and equal to 500 K elements. The results are presented in Figure 4.11
and Table 4.3. The curve tends to a constant line, but the high number of
machines increases the cost of communication among the partitions. However,
the results show the ability of the framework to solve a numerical analysis with
hundreds of millions elements.

The time required for communication between the machines may become

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 78

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 200 400 600 800 1000 1200 1400

Ti
m

e
(s

)

No. of machines

Static Analysis

Figure 4.10: Speedup for solving a static analysis on Blue Waters with 50 M
elements.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200

Ti
m

e
(s

)

No. of machines (No. of elements)

Static Analysis

(500 M)(300 M)(150 M)(50 M)(25 M)(5 M)

Figure 4.11: Computational performance for a constant ratio between the
number of elements and machines used on Blue Waters.

a bottleneck, when the simulation is distributed among too many cluster nodes.
A more detailed investigation may be required to improve the scalability of the
solution. The Blue Waters system has many performance tools that can be used
to map the bottlenecks and fine tune the code in order to run more efficiently
on its architecture.

A topology optimization analysis was also tested on Blue Waters. We
simulated the Cantilever Beam example described in Figure 4.12 with a
distributed external load and the optimization parameters listed in Table 3.5,
except for the volume fraction constraint, which was defined as 0.1.

We used a mesh composed by 12 million hexahedron elements with 48

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 79

Static Analysis

Elements Machines Solver Iters Time/Iter (s)

5 M 10 2301 0.17

25 M 50 4351 0.23

50 M 100 6500 0.30

150 M 300 9957 0.39

300 M 600 14945 0.43

500 M 1000 23255 0.49

Table 4.3: Static analysis with a constant number of elements per machine on
the Blue Waters Supercomputer.

F

Figure 4.12: Geometry and boundary conditions and distributed external load
of the topology optimization simulation on Blue Waters.

and 300 machines. The optimal topology is shown in Figure 4.13. Table 4.4
shows the total time to solve the topology optimization analysis, the time per
topology optimization iteration, and the time per solver iteration.

3D Cantilever Beam (12 M Elements)

Machines Time (h) Time/Iter (s) Time/Solver Iter (s)

48 48.6 700 0.19

300 14.7 212 0.06

Table 4.4: Time to solve the example of Figure 4.12 on the Blue Waters
Supercomputer.

The results in Table 4.4 show how costly is a topology optimization anal-

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 80

4.13(a):

4.13(b):

4.13(c):

Figure 4.13: Final optimal topology of the 3D Cantilever Beam problem with a
distributed external force, simulated with 12 million elements on 300 machines
of the Blue Waters Supercomputer.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 81

ysis. The time per solver iteration is of 0.19 seconds but the complete analysis
requires 2 days, when using 48 cluster machines. The TopSim framework was
able to drop the time down to 14.7 hours when the number of machines was
increased to 300. In our previous work [28], a similar topology optimization
example, with also 12 million elements, was solved in 6 days and 6 hours using
only 1 GPU. The TopSim support for a distributed computing provides the
framework the capacity to simulate computational costly analyses in a more
feasible way, considering the availability of more computational resources.

Our element-by-element iterative solver provides the TopSim framework
the ability to simulate an extremely large-scale example. The low memory
consumption and the distributed parallel computing algorithm allow the
framework to solve a linear system with billions of equations. We simulated a
few iterations of the topology optimization example from Figure 4.12 with 324
million elements (975 million dofs) on 864 machines, and 1 billion elements (3
billion dofs) on 2916 machines. The results are shown in Table 4.5, where the
average time per optimization iteration for the problem with almost 1 billion
dofs was of 45 min and for the problem with 3 billion dofs was of 1.21 hour.
The time per solver iteration was almost constant, with 0.14 and 0.16 seconds
for the first and second examples, respectively.

3D Cantilever Beam

Elements DOFs Machines Time/Iter Solver Iters Time/Solver Iter

324 M 975 M 864 45 min 18700 0.14

1 B 3 B 2916 1.21 hr 28000 0.16

Table 4.5: Extremely large-scale examples simulated on Blue Waters.

The results show the capacity of the framework to generate and handle
a huge mesh with 3 billion dofs. Such simulation brings many challenges that
are best overcome when specific approaches are applied to each of them. We
believe that the TopSim framework presented efficient solutions from small
to huge mesh sizes, used in different problems with different types of finite
elements. We show in Figure 4.14 a summary with all the services and plugins
developed in the TopSim framework.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 4. Distributed Solution on Clusters 82

Analysis Behavior Integrator Element Material

Solver Reader Writer

Static Linear Load Control Isotropic

Crout

Umfpack

NFReader NFWriter

PCG

EbEPCG

CSC

Precond Sparse Matrix

Jacobi CSR

ParReader

ParSimp

Q4

Brick

Hexagonal Prism

ParEbEPCG

Pardiso

ParJacobi ParWriter

Decompose

METIS

Own implementation
3rd party library

BrickBuilder

MeshBuilder

HexaprismBuilder

Nonlinear

Simp

Newton-Raphson

Figure 4.14: Summary of all services and plugins develop in the TopSim
framework.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

5
Conclusion

This work presents a framework for large-scale numerical analysis based
on plugins. The framework provides a fully flexible and easy to extend
environment where specialized plugins are created to solve different problems,
in an efficient manner. A hybrid distributed parallel code was implemented in
the framework to simulate extremely large numerical analyses with a billion of
finite elements on the Blue Waters Supercomputer.

We propose an element-by-element version of the PCG solver with low
memory consumption using parallel computing. Our strategy is race condition
free, since each thread is assigned to a finite element node. The global stiffness
matrix is never assembled and only one local stiffness matrix is used for the
elements in the mesh, taking advantage of the fact that they are all identical.
We present the architecture of the framework and its functionality that allows
the user to configure the plugins dynamically in order to achieve the best
performance when simulating both small and large mesh sizes.

The flexibility of the framework demonstrated by the implementation
of direct and iterative solvers for linear systems of equations, sparse matrix
storage schemes and preconditioners, different finite element types (such as
the Q4, Brick8 and hexagonal prism element), combined with plugins for
linear elastic static and topology optimization analyses. We show that the
plugin-based approach does not interfere with the performance of the TopSim
framework, by comparing the results with Abaqus, a well known software for
numerical analyses. The implementation proposed in TopSim, for both iterative
and direct solvers, was able to handle large meshes as well as Abaqus, and even
larger problems with the Pardiso and the EbEPCG solvers. Using all 24 cores
of the machine, the EbEPCG solver in TopSim is 10% faster than Abaqus in
the example with 1.5M elements.

The TopSim framework was extended for distributed computing on clus-
ters. Our element-by-element solution was adapted to a domain decomposi-
tion scheme, using MPI for communication among subdomains and OpenMP
for a parallel computing inside each subdomain. The domain decomposition
was implemented inside the framework using the METIS library. However, to
decompose a mesh with a billion of elements it would require an unfeasible

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 5. Conclusion 84

amount of memory. Therefore, we created plugins to generate the mesh al-
ready partitioned and distributed on the nodes of the cluster, considering that
we are dealing with only structured meshes.

We used the Blue Waters Supercomputer to simulate a linear elastic
static analysis with 500 million finite elements on 1000 machines. The solution
required 23255 iterations with 0.49 seconds per iteration. The TopSim was also
used to solve a topology optimization problem with 12 million elements on 300
machines, requiring 212 seconds per optimization iteration and 0.06 seconds
per solver iteration. Considering that our implementation has no limitation to
generate and simulate any mesh size, we tested the feasibility of the solution for
an extremely large-scale problem. A few iterations of a topology optimization
example were simulated with 324 million elements on 864 machines and 1
billion elements (3 billion dofs) on 2916 machines, with 0.14 seconds and 0.16
seconds per solver iteration, respectively.

The results obtained here demonstrate the feasibility and computational
efficiency of the proposed plugin architecture.

5.1
Future Work

We present some suggestions for future work, as follows:

– A better preconditioner for the element-by-element PCG
solver. The EbEPCG solver still needs some improvements regarding the
high number of iterations for convergence. A better pre-conditioner may
reduce substantially the computing time of the solver. We are currently
investigating the approximate inverse preconditioner [54, 55] applied to
topology optimization problems, with preliminary results. Another op-
tion is the multigrid pre-conditioned conjugate gradients solver recently
presented by Amir et al. [26].

– Improvements on MPI communications among subdomain par-
titions. The distributed solution in the framework still requires a more
detailed investigation about the bottlenecks in simulations of large-scale
problems with too many cluster nodes. The Blue Waters system provides
many performance tools that can be used to fine tune the code to run
more efficiently on its architecture.

– Distributed computing on clusters of GPUs. The low memory con-
sumption of the EbEPCG solver is well suited for simulations on GPUs.
These massive parallel units may speedup extremely large simulations,
using fewer cluster machines.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Chapter 5. Conclusion 85

– Distributed visualization and post-processing of extremely
large simulations. Scalable and efficient visualization methods are very
important for simulating large-scale numerical analyses. The visualiza-
tion of such large examples presents many challenges due to the huge
volume of data, resulting from the parallel simulations.

– Extending the framework for different types of methods and
analyses. The TopSim framework has the flexibility to be extended for
solving numerical problems with different methods and analyses. Some
researches are already under development to implement the Ground
Structure Method and the Interior Point Methods for solving topology
optimization problems [56].

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography

[1] SURESH, K.. Efficient generation of large-scale pareto-optimal
topologies. Structural and Multidisciplinary Optimization, 47(1):49–61, may
2012.

[2] AAGE, N.; ANDREASSEN, E. ; LAZAROV, B. S.. Topology optimiza-
tion using PETSc: An easy-to-use, fully parallel, open source
topology optimization framework. Structural and Multidisciplinary Op-
timization, 51(3):565–572, aug 2014.

[3] SAAD, Y.. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition,
2003.

[4] GUIMARÃES, L. G. S.; MENEZES, I. F. M. ; MARTHA, L. F.. Disci-
plina de programação orientada a objetos para sistemas de el-
ementos finitos. In: ANAIS DO XIII CILAMCE (CONGRESSO IBERO-
LATINO AMERICANO SOBRE MéTODOS COMPUTACIONAIS PARA EN-
GENHARIA), volumen 1, p. 342–351, Porto Alegre, Brasil, 1992.

[5] MARTHA, L. F.; MENEZES, I. F. M.; LAGES, E. N.; PARENTE JR., E. ;
PITANGUEIRA, R.. An OOP class organization for materially non-
linear FE analysis. In: JOINT CONFERENCE OF ITALIAN GROUP OF
COMPUTATIONAL MECHANICS AND IBERO-LATIN AMERICAN ASSO-
CIATION OF COMPUTATIONAL METHODS IN ENGINEERING, p. 229–
232, Padova, Italia, 1996.

[6] MORETTI, C. O.; CAVALCANTE, J. B.; BITTENCOURT, T. N. ; MARTHA,
L. F.. A parallel environment for three-dimensional finite element
analysis. International conference on engineering computational technology,
p. 283–287, 2000.

[7] MARGETTS, L.. Parallel Finite Element Analysis. PhD thesis, 2002.

[8] SMITH, I. M.; GRIFFITHS, D. V. ; MARGETTS, L.. Programming the
Finite Element Method. Wiley, 5th edition edition, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography 87

[9] BARTLETT, R. A.; HOWLE, V. E.; HOEKSTRA, R. J.; HU, J. J.; KOLDA,
T. G.; LEHOUCQ, R. B.; LONG, K. R.; PAWLOWSKI, R. P.; PHIPPS, E. T.;
SALINGER, A. G.; TUMINARO, R. A. Y. S.; WILLENBRING, J. M. ; STAN-
LEY, K. S.. An Overview of the Trilinos Project. V(December):1–27,
2004.

[10] BANGERTH, W.; HARTMANN, R. ; KANSCHAT, G.. deal.II—A
general-purpose object-oriented finite element library. ACM
Transactions on Mathematical Software, 33(4):24–es, aug 2007.

[11] WEINBUB, J.; RUPP, K. ; SELBERHERR, S.. ViennaX: a parallel
plugin execution framework for scientific computing. Engineering
with Computers, 30(4):651–668, feb 2013.

[12] MENDES, C. A. T.; GATTASS, M. ; ROEHL, D.. The GeMA framework
– An innovative framework for the development of multiphysics
and multiscale simulations. In: M. Papadrakakis, V. Papadopoulos, G.
Stefanou, V. P., editor, VII EUROPEAN CONGRESS ON COMPUTATIONAL
METHODS IN APPLIED SCIENCES AND ENGINEERING, Crete Island,
Greece, 2016.

[13] TALISCHI, C.; PAULINO, G. H. ; LE, C. H.. Honeycomb Wachspress
finite elements for structural topology optimization. Structural and
Multidisciplinary Optimization, 37(6):569–583, may 2008.

[14] JOG, C. S.; HABER, R. B.. Stability of finite element models
for distributed-parameter optimization and topology design.
Computer Methods in Applied Mechanics and Engineering, 130(3-4):203–
226, apr 1996.

[15] DIAZ, A.; SIGMUND, O.. Checkerboard patterns in layout optimiza-
tion. Structural Optimization, 10(1):40–45, 1995.

[16] TALISCHI, C.; PAULINO, G. H.; PEREIRA, A. ; MENEZES, I. F. M..
Polygonal finite elements for topology optimization : A unifying
paradigm. International Journal for Numerical Methods in Engineering,
82(December 2009):671–698, 2010.

[17] ROZVANY, G.; QUERIN, O.; GASPAR, Z. ; POMEZANSKI, V.. Weight-
increasing effect of topology simplification. Structural and Multidis-
ciplinary Optimization, 25(5-6):459–465, dec 2003.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography 88

[18] TALISCHI, C.; PAULINO, G. H.; PEREIRA, A. ; MENEZES, I. F. M..
PolyTop: a Matlab implementation of a general topology opti-
mization framework using unstructured polygonal finite element
meshes. Structural and Multidisciplinary Optimization, 45(3):329–357, jan
2012.

[19] TALISCHI, C.; PEREIRA, A.; PAULINO, G. H.; MENEZES, I. F. M. ;
CARVALHO, M. S.. Polygonal finite elements for incompressible
fluid flow. International journal for numerical methods in fluids, 74(October
2013):134–151, 2014.

[20] SIGMUND, O.. A 99 line topology optimization code written
in Matlab. Structural and Multidisciplinary Optimization, 21(2):120–127,
2001.

[21] ANDREASSEN, E.; CLAUSEN, A.; SCHEVENELS, M.; LAZAROV, B. S. ;
SIGMUND, O.. Efficient topology optimization in MATLAB using
88 lines of code. Structural and Multidisciplinary Optimization, 43(1):1–16,
nov 2010.

[22] PEREIRA, A.; MENEZES, I. F. M.; TALISCHI, C. ; PAULINO, G. H.. An
efficient and compact Matlab implementation of topology opti-
mization: Application to compliant mechanism. In: PROCEEDINGS
OF THE XXXII IBERIAN LATIN AMERICAN CONGRESS ON COMPUTA-
TIONAL METHODS IN ENGINEERING, Ouro Preto - MG, Brazil, 2011.

[23] DEATON, J. D.; GRANDHI, R. V.. A survey of structural and
multidisciplinary continuum topology optimization: post 2000.
Structural and Multidisciplinary Optimization, 49(1):1–38, jul 2014.

[24] SURESH, K.. A 199-line Matlab code for Pareto-optimal tracing
in topology optimization. Structural and Multidisciplinary Optimization,
42(5):665–679, jul 2010.

[25] AAGE, N.; LAZAROV, B. S.. Parallel framework for topology opti-
mization using the method of moving asymptotes. Structural and
Multidisciplinary Optimization, 47:493–505, jan 2013.

[26] AMIR, O.; AAGE, N. ; LAZAROV, B. S.. On multigrid-CG for efficient
topology optimization. Structural and Multidisciplinary Optimization,
49(5):815–829, nov 2014.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography 89

[27] YADAV, P.; SURESH, K.. Large Scale Finite Element Analysis via
Assembly-Free Deflated Conjugate Gradient. Journal of Computing
and Information Science in Engineering, 14(4):041008, 2014.

[28] DUARTE, L. S.; CELES, W.; PEREIRA, A.; IVAN, I. F. ; PAULINO, G. H..
PolyTop++: an efficient alternative for serial and parallel topol-
ogy optimization on CPUs & GPUs. Structural and Multidisciplinary
Optimization, 52(5):845–859, 2015.

[29] NVIDIA. Cuda programming guide 5.5, 2013,
https://developer.nvidia.com/cuda-downloads.

[30] CELES, W.; PAULINO, G. H. ; ESPINHA, R.. A compact adjacency-
based topological data structure for finite element mesh rep-
resentation. International Journal for Numerical Methods in Engineering,
64(11):1529–1556, nov 2005.

[31] BENDSOE, M. P.. Optimal shape design as a material distribution
problem. Structural Optimization, 202:193–202, 1989.

[32] SCHMIDT, S.; SCHULZ, V.. A 2589 line topology optimization code
written for the graphics card. Computing and Visualization in Science,
14(6):249–256, aug 2012.

[33] GAIN, A. L.; PAULINO, G. H.. A critical comparative assessment
of differential equation-driven methods for structural topology
optimization. Structural and Multidisciplinary Optimization, 48(4):685–
710, jul 2013.

[34] OSHER, S.; FEDKIW, R. P.. Level Set Methods: An Overview and
Some Recent Results. Journal of Computational Physics, 169(2):463–
502, may 2001.

[35] OSHER, S.; SETHIAN, J. A.. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lations. Journal of Computational Physics, 79(1):12–49, nov 1988.

[36] BOURDIN, B.; CHAMBOLLE, A.. Design-dependent loads in topol-
ogy optimization. 9(January):19–48, 2003.

[37] BENDSOE, M.; SIGMUND, O.. Topology Optimization: Theory,
Methods, and Applications. Engineering online library. Springer Berlin
Heidelberg, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography 90

[38] LEON, S. E.; PAULINO, G. H.; PEREIRA, A.; MENEZES, I. F. M. ; LAGES,
E. N.. A Unified Library of Nonlinear Solution Schemes. Applied
Mechanics Reviews, 64(July):040803, 2011.

[39] LAGES, E.; PAULINO, G.; MENEZES, I. ; SILVA, R.. Nonlinear Finite
Element Analysis using an Object-Oriented Philosophy – Ap-
plication to Beam Elements and to the Cosserat Continuum.
Engineering with Computers, 15(1):73–89, jan 1999.

[40] TALISCHI, C.; PAULINO, G. H.; PEREIRA, A. ; MENEZES, I. F. M.. Poly-
Mesher: a general-purpose mesh generator for polygonal ele-
ments written in Matlab. Structural and Multidisciplinary Optimization,
45(3):309–328, jan 2012.

[41] TEWARSON, R. P.. Sparse Matrices. Mathematics in Science and
Engineering. Elsevier Science, 1973.

[42] GRCAR, J. F.. Mathematicians of Gaussian elimination. Notices of
the American Mathematical Society, 58(6):782 – 792, 2011.

[43] TIMOTHY A. DAVIS; IAIN S. DUFF. An unsymmetric-pattern multi-
frontal method for sparse LU factorization. SIAM Journal on Matrix
Analysis and Applications, 18(1):140–158, 1997.

[44] SCHENK, O.; GÄRTNER, K.. Solving unsymmetric sparse systems
of linear equations with PARDISO. Future Generation Computer
Systems, 20(3):475–487, apr 2004.

[45] WANG, S.; DE STURLER, E. ; PAULINO, G. H.. Large-scale topology
optimization using preconditioned Krylov subspace methods
with recycling. International journal for numerical methods in engineering,
(September 2006):2441–2468, 2007.

[46] AUGARDE, C.; RAMAGE, A. ; STAUDACHER, J.. An element-based
displacement preconditioner for linear elasticity problems. Com-
puters & Structures, 84(31-32):2306–2315, dec 2006.

[47] GEBREMEDHIN, A. H.; MANNE, F. ; POTHEN, A.. What Color Is Your
Jacobian? Graph Coloring for Computing Derivatives. Society for
Industrial and Applied Mathematics, 47(4):629–705, jan 2005.

[48] OPENMP ARCHITECTURE REVIEW BOARD. OpenMP application
program interface version 3.1, 2011, http://www.openmp.org/.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

Bibliography 91

[49] COOK, R. D.. Finite Element Modeling for Stress Analysis. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[50] LEE, S.-L.; MANUEL, F. ; ROSSOW, E.. Large deflections and sta-
bility of elastic frames. Journal of Engineering Mechanics (ASCE),
94(EM2):521–547, 1968.

[51] SURESH, K.. Large-Scale Matrix-Free Topology Optimization on
the GPU - GTC 2012. In: GTC 2012, 2012.

[52] KARYPIS, G.; KUMAR, V.. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[53] ESPINHA, R.; CELES, W.; RODRIGUEZ, N. ; PAULINO, G. H.. ParTopS:
compact topological framework for parallel fragmentation sim-
ulations. Engineering with Computers, 25(4):345–365, jun 2009.

[54] BENZI, M.; BERTACCINI, D.. Approximate inverse preconditioning
for shifted linear systems. BIT Numerical Mathematics, 43(2):231–244,
2003.

[55] BENZI, M.; CULLUM, J. K. ; TUMA, M.. Robust Approximate Inverse
Preconditioning for the Conjugate Gradient Method. SIAM
Journal on Scientific Computing, 22(4):1318–1332, 2000.

[56] ZEGARD, T.; PAULINO, G. H.. GRAND3 - Ground structure based
topology optimization for arbitrary 3D domains using MAT-
LAB. Structural and Multidisciplinary Optimization, 52(6):1161–1184, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1212399/CA

	TopSim: A plugin-based framework for large-scale numerical analysis
	Resumo
	Contents
	Introduction
	Motivation
	Objectives
	Related Work
	Finite Element Analysis
	Topology Optimization Analysis

	Document Organization

	Theory and Formulations
	Finite Element Method
	Topology Optimization

	Plugin-based Framework
	Overview
	Model Representation
	Plugin Manager
	Plugins
	Analysis, Behavior, Integrator, and Numbering
	Reader and Writer
	Sparse Matrix, Linear System, and Preconditioner
	Topology Optimization and Element Types

	Results
	Linear Static Analysis
	Nonlinear Static Analysis
	Topology Optimization Analysis
	Element-by-Element Approach

	Distributed Solution on Clusters
	Distributed Approach
	Distributed Mesh Generation
	Results

	Conclusion
	Future Work

	Bibliography

